
1

AN ALGORITHM DEVELOPMENT OF TERRESTRIAL OIL

SPILL MODELLING AND OIL VOLUME CALCULATION

WITH GIS

Calculation of oil droplet size distribution and surface oil spill modeling:

experimental study and Algorithm development/ment

ABSTRACT

The oil spill has very hazardous effects on the environment. The spill caused by

oil platforms and oil pipeline networks in water bodies kills thousands of marine

creatures because oil pollution in the ocean destroys marine creatures' food

sources and makes it hard to breathe and move. Moreover, the oil contamination

devastates agricultural areas, and these lands become infertile on terrestrial

sites. This type of contamination generally occurs in the same way as water body

oil spills. The terrestrial oil spill has a danger of turning into the water-based oil

pollution due to oil spill can reach water streams, freshwater sources, and seas.

The excellent site of the oil spill is that the trigger point of pollution can be

predictable because energy transportation companies know where oil pipelines

lie down as petroleum exploration and production companies know the exact

coordinates of drilling wells. To minimize the harmful effects of oil contamination

on the land site, petroleum companies should prepare scenarios before the

disaster happens.

In this study, terrestrial oil spill volume and distribution route on the surface was

modeled using Digital Elevation Model (DEM) on Geographic Information System

(GIS) technology with its powerful tools on ArcGIS and PostGIS. At the end of

the study, the volume of oil that will leak along the pipe route has been calculated

according to the topography. Then the oil flow path with puddles location and

accumulated oil volume is extracted before a possible oil spill happens. The study

will help assess whether sites of oil pipeline valves are selected efficiently or not,

2

how much area will be affected by pollution, and whether oil reaches freshwater

supplies.

Keywords; modeling oil spills on land, terrestrial oil pollution analysis, oil path extraction, GIS

1-INTRODUCTION

Due to the necessity of oil, exploration technology, production sites, and

companies' budgets have been expended. For example, Ultra-deep wells can go

down to up to 8000 m. depth [1], US field production of crude oil was about 6700

thousand barrels per day in 2008, but it increased to about 16500 thousand

barrels per day in 2021 [2]. Five oil and two automobile companies were in the

top 10 of the global fortune 500's 2020 list [3].

Whereas negative impacts of petroleum products seriously threaten our future,

we might not build our modern civilization without it. After petroleum started to

use as an industrial material, we received benefits in various areas such as

transportation, electricity, heating, cooling, and clothing [4]. In recent years, our

society has been searching for alternative energy sources because

environmental pollution and global warming will cause dramatically decrease not

only in animals but also in human populations soon. Due to necessity and

dependency, sharply getting rid of oil and its products seem impossible in a short

period.

Whether or not oil production has been done on a marine site, the petroleum

refining process and a significant part of consumption have taken place in the

terrestrial site. Most terrestrial oil spills occur during transportation. The leading

causes of pipeline oil spills are faulty pipeline welds, landslides, equipment,

operator-related causes, terrorist attacks, earthquakes, and corrosions [5, 6].

According to the CIA's factbook, there is more than 300,000 km of the oil pipeline

in the world [7]. That means oil pipelines can cover about 7.5 times the world's

circumference.

Moreover, the total offshore pipeline length to the onshore pipeline is about 5%

because the investment cost of an offshore pipeline is about three times higher

and carrying out maintenance and repair activities for an underwater pipeline is

harder [8].

3

Total onshore construction (42,565 miles) beyond

2013 will cost nearly $132 billion

Total offshore construction (2,270 miles)

beyond 2013 will cost more than $12 billion

$2.9 billion for 4-10 inc. $558 million for 4-10 inc.

$19.7 billion for 12-20 inc. $3.8 billion for 12-20 inc.

$41 billion for 22-30 inc. $7.9 billion for 22-30 inc.

Table form Oil & Gas Journal[8]

The improving technologies in remote sensing allow detecting hydrocarbon

accumulations, indicating visible and invisible oil seepage footprints. Visible-near

infrared and short-wave infrared wavelengths can be used for invisible traces of

oil seepage, and short and long wave infrared wavelengths can be used for the

visible indicator of oil seepage [9-11]. Also, Synthetic Aperture Radar (SAR) can

detect visible or invisible oil seepage existence [10-12].

Although terrestrial site oil pollution is at least as dangerous as the oil spill in

water, there are many academic sources and risk modeling applications for the

oil spill on water bodies [13-16]. Literature reviews show that researchers mainly

focus on oil spill pollution's environmental impact on the land [17-19]. Some other

researchers focus on how deep the leak can go, depending on the soil types at

an incident with predefined or calculated oil volume [20-22]. These studies

examined only the vertical distribution of the oil spill and evaluated whether the

leakage could reach the aquifers or not. In other studies, GIS was used,

researchers mostly modeled actual events, and after the oil spill, the impact of

the environmental disaster was analyzed and mapped with actual variables [23,

24]. This study supports the literature for providing necessary tools for identifying

possible leaks on the terrestrial site.

A GIS solution will calculate horizontal spill direction and possible spill volume on

the ground. There are predefined flow direction and accumulation analysis tools

on GRASS [25, 26] and ArcGIS [27, 28]. However, these analyses are not only

enough for oil spills because flow direction and accumulation analyses calculate

the flow directions of all pixels in the model and the total flood volume for the

whole model [29]. Pipeline-induced oil spill starts from a single point and spread

4

ground from that location. Therefore, a new spill direction approach has been

developed for onshore oil spill accumulation, similar to the D8 (eight directions)

method on GRASS [25, 26] and ArcGIS [27, 28], having different neighborhood

relations. Furthermore, the Algorithm developed via GIS tools for calculating the

volume of oil that may leak will be examined in this study.

3. OIL SPILL MODELLING AND VOLUME CALCULATION

Oil spills pose significant environmental and economic risks due to their potential

to cause severe damage to natural ecosystems. Various factors contribute to

onshore oil spills, with the primary causes being leaks at the drilling point, leaks

in oil pipelines and storage tanks, and accidents during oil transportation. These

incidents harm the environment, leading to long-term ecological degradation,

harm to wildlife populations, and disruptions to local communities that rely on

affected ecosystems for their livelihoods [1].

To effectively address these challenges, it is crucial to have accurate information

about the location and volume of oil spills. In the United States, the US

Environmental Protection Agency (USEPA) plays a pivotal role in registering and

monitoring oil spill incidents, while in Europe, the European Environment Agency

(EEA) fulfils a similar function. These agencies collect and analyze data on oil

spill locations, volumes, and other relevant information, which are crucial for

assessing the extent of damage and formulating effective response strategies.

By studying historical spill data, patterns can be identified, enabling policymakers,

industry professionals, and environmentalists to develop targeted measures to

mitigate future spills.

In addition to the USEPA and EEA, organizations such as the Pipeline and

Hazardous Materials Safety Administration (PHMSA) in the USA and the

European Gas Pipeline Incident Data Group (EGIG) in Europe specifically record

and analyze pipeline spill data. These organizations are vital in monitoring

pipeline integrity, identifying vulnerabilities, and implementing measures to

5

prevent leaks and spills. By gathering data on pipeline incidents, including causes

and locations, these organizations contribute to a better understanding of the

factors determining to onshore oil spills.

Statistical information compiled by these agencies reveals that pipelines

significantly cause both onshore and offshore oil spills. Pipeline failures can occur

for various reasons, including corrosion, material defects, poor maintenance, or

external factors such as excavation damage [2]. The risks associated with

pipeline transportation necessitate developing and implementing stringent

inspection and maintenance programs to detect potential weaknesses and

address them promptly. Regular inspections, adherence to industry standards,

and advanced technologies such as inline inspection tools and acoustic

monitoring systems can help identify and mitigate potential pipeline failures

before they result in spills.

Furthermore, oil storage tanks represent another significant cause of onshore oil

spills. These tanks, which store large quantities of oil for various purposes, can

develop leaks due to structural weaknesses, inadequate maintenance, or

improper handling [3]. Effective storage tank management practices, including

regular inspections, proper maintenance, and secondary containment systems,

are crucial to prevent spills. Additionally, implementing advanced technologies

such as automated leak detection systems can provide early warning signals and

enable swift response in case of tank failures.

Although statistical information and records can be used to analyze the causes

and consequences of oil spills, taking proactive measures before these events

occur is paramount. Geographic Information System (GIS) analysis can play a

significant role in achieving this. GIS integrates geographical data with analytical

capabilities, allowing for identifying vulnerable areas and predicting potential spill

scenarios based on topographic variables. GIS analysis can provide insights into

the possible spread and distribution of oil leakage in horizontal and vertical

directions by considering terrain features, elevation, and proximity to

6

environmentally sensitive areas. This information enables stakeholders to

prioritize prevention efforts, target inspections, and maintenance activities, and

develop effective emergency response plans tailored to specific locations and

potential spill scenarios.

Moreover, integrating GIS technology with predictive modeling techniques allows

for a more accurate assessment of the potential volume of oil that could leak from

pipeline cracks. By incorporating factors such as pipeline characteristics, flow

rates, and environmental conditions, predictive models can estimate the potential

volume of oil release and its dispersion in the surrounding areas. This knowledge

aids in developing contingency plans, resource allocation, and implementing

measures to minimize the environmental impact of oil spills.

Today, UAV, satellite and photogrammetric images are used along with GIS to

detect the possible pipeline leak route [4]. With the help of these images, the

situation of the land before the leak and the situation after the leak can be

compared. This makes it easier to apply the algorithms developed for leak

detection to the field in terms of both route accuracy and sensitivity.

In summary, addressing the causes and consequences of onshore oil spills

requires a multi-faceted approach encompassing accurate data collection,

rigorous inspections, and applying advanced technologies such as GIS analysis,

images and predictive modeling. By understanding the factors contributing to oil

spills and their potential impacts, stakeholders can implement targeted preventive

measures to minimize the occurrence and mitigate the consequences of such

incidents. GIS analysis allows for assessing vulnerable areas and predicting spill

scenarios, enabling informed decision-making and effective emergency response

planning. Ultimately, these efforts contribute to protecting the environment,

preserving natural resources, and the well-being of communities affected by oil

spills.

7

3.1. Supervisory Control and Data Acquisition (SCADA)

Supervisory Control and Data Acquisition (SCADA) is crucial in modern industrial

control systems. It facilitates the monitoring, controlling, and real-time data

collection via the control center for these systems. It is a vital intelligence

gathering, control, and supervision node for diverse industrial operations. With

technological advancements, machine learning and artificial intelligence can be

implemented to analyze the collected data, improving system efficiency and

effectiveness [5, 6].

One salient application of SCADA can be found within pipeline systems, where it

brings several remarkable capabilities. To illustrate, it provides an automated

start-up and shutdown functionality. This is significant for operations involving

equipment such as pumps, where SCADA systems can autonomously initiate or

cease their operation based on various system parameters or conditions.

In addition to this, SCADA systems are equipped with a mechanism for an

emergency shutdown. This functionality activates when the pipeline pressure falls

critically low, or leakage is detected. The system can rapidly respond to potential

hazards through such mechanisms, thereby maintaining system integrity and

minimizing potential environmental and financial damage.

Moreover, the SCADA system aids in configuring the pipeline infrastructure,

which includes the operations of valves - whether they need to be opened or

closed. This function offers fine control over the pipeline operations, making the

system adaptive and responsive to varying operational needs.

Another noteworthy feature provided by SCADA systems is real-time modeling.

This functionality assists in eliminating any erroneous readings by simultaneously

examining multiple data sets. By identifying and excluding inaccurate data, real-

time modeling helps maintain the credibility and accuracy of the system's data,

thus enhancing decision-making processes.

8

Furthermore, SCADA can detect leaks by monitoring for severe pressure and

flow rate drops. Upon detecting such a drop, the system can pinpoint the location

of the leakage and initiate preventive measures. This capability aids in timely leak

detection and remediation, mitigating any substantial impact on system

performance and the environment.

Batch tracking represents another major functionality provided by SCADA. It

enables the separation of different shipments at the destination point, ensuring

accurate tracking and allocation of resources. This function, therefore, brings a

significant degree of efficiency and accountability to the overall pipeline

operation.

A function related to accuracy and validation in SCADA systems is meter proving.

Here, various parameters, such as the transported product's pressure,

temperature, density, and flow rate, can be compared at many different points.

This process ensures the accuracy and reliability of meter readings, contributing

to the overall system performance and data credibility.

Regarding communication, SCADA systems utilize diverse methods such as

copper cables, radio links, GPRS modems, and fiber cables. Modern systems

often incorporate more than one of these methods with redundancy, ensuring a

reliable and consistent data exchange between the SCADA system and the

equipment.

Upon detecting a leak in an oil pipeline, SCADA systems are programmed to

automatically shut down the pump systems and valves before and after the

leakage site. By doing so, the system minimizes the leakage volume and ensures

the safety and efficiency of pipeline operations, ultimately showcasing the

comprehensive functionality of SCADA in industrial control systems.

9

3.2. Oil Spill Volume Calculation

Despite high-speed fiber connections linking the SCADA system and pipeline

equipment, the flow rate will be limited by the time between leak detection and

valve closure. Furthermore, an additional flow can occur due to trapped oil,

resulting from establishing atmospheric pressure equilibrium.

3.2.1. Calculation of Leakage Volume from Oil Storage Tanks

The likelihood of onshore oil spills resulting from in-ground oil storage tank

rupture is minimal. The primary causes of tank rupture are lightning, maintenance

or hot work activities, operational errors, equipment failures, and intentional

sabotage [7]. The primary concern associated with oil storage tanks is the

potential for explosions. To mitigate this risk, these tanks are designed with

floating roofs to prevent oil evaporation and reduce the likelihood of an explosion.

However, it is important to note that even with such measures in place, the risk

of explosion cannot be eliminated. Therefore, further preventive and mitigation

measures must be implemented to minimize tank rupture risk [8]. These

measures include regular inspections and maintenance, installing lightning

protection systems, utilizing fire detectors, and implementing tank cooling

systems. By employing these strategies, the risk of rupture in storage tanks can

be significantly reduced. If a rupture occurs in an oil storage tank, the volume of

oil above the rupture point may escape. The calculation of volume to flow in a

regularly shaped storage tank depends on parameters such as the height of the

tank (h), the rupture height from the tank bottom (l), and the base area of the tank

(S).

The volume of oil that will flow from the oil tank if no measures are taken

If the volume of the round, irregularly shaped storage tank is

10

3.2.2. Calculation of Leakage Volume from Oil Pipelines

The total leakage volume refers to the quantity of fluid that escapes between a

damaged section of a pipe and the point at which a valve is fully closed. It

encompasses the cumulative volume of fluid that flows until the pressure within

the system is balanced after the valves have been shut, assuming no corrective

actions are taken in oil pipelines.

3.2.2.1. Leakage Volume in Time until Valves Shut-in

The US Department of the Interior, specifically the Bureau of Ocean Energy

Management, has proposed two distinct approaches for estimating the leakage

volume resulting from a rupture in a pipeline [9]. It is important to note that these

methods are not applicable for assessing minor fractures or pinhole leaks in

pipelines.

• IDpipe [in]: Pipeline internal Diameter

• Lpipe [ft]: Pipeline length

• 𝑋𝑜𝑣𝑓
𝑖𝑛𝑖𝑡𝑖𝑎𝑙[Dimensionless] : Oil volume fraction at ambient pressure and

temperature

• 𝑋𝑜𝑣𝑓
𝑎𝑚𝑏[Dimensionless] : Oil and gas densities at ambient pressure and

temperature

• 𝜌𝑜
𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑎𝑛𝑑𝜌𝑔

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 [lb/ft³]: Oil and gas densities at initial operational conditions

• 𝜌𝑜
𝑎𝑚𝑏𝑎𝑛𝑑𝜌𝑔

𝑎𝑚𝑏 [lb/ft³]: Oil and gas densities at ambient pressure and

temperature

• GOR [scf/stb]: Gas-oil ratio at standard conditions in pipeline

• 𝜌𝐿
𝑠𝑡𝑐 [lb/ft³] and γo [-] (specific gravity, dimensionless): Oil density at the

standard condition in the pipeline

• 𝜌𝑔
𝑠𝑡𝑐 [lb/ft³], γg [-] (Specific gravity, dimensionless): Pipeline gas density at

the standard condition

• Q [stb/d]: Pipeline flow rate

• t [min]: Time until valve close

The basic formula is:

𝑉𝑃𝑟𝑒−𝑆ℎ𝑢𝑡 =
𝑄.𝑡

1140
 [bbls]

11

The advanced formula is:

Calculating of total volume of pipe

𝑉𝑝𝑖𝑝𝑒 = (
𝐼𝐷𝑃𝑖𝑝𝑒

24
)

2

. 𝜋. 𝐿𝑝𝑖𝑝𝑒 [𝑓𝑡3]

Calculating the initial mass

𝑚𝑡𝑜𝑡
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = (𝜌𝑜

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 . 𝑉𝑝𝑖𝑝𝑒. 𝑋𝑜𝑣𝑓
𝑖𝑛𝑖𝑡𝑖𝑎𝑙) + (𝜌𝑔

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 . 𝑉𝑝𝑖𝑝𝑒 . (1 − 𝑋𝑜𝑣𝑓
𝑖𝑛𝑖𝑡𝑖𝑎𝑙)) [lb]

Calculating the total mass

𝑚𝑡𝑜𝑡
𝑎𝑚𝑏 = (𝜌𝑜

𝑎𝑚𝑏 . 𝑉𝑝𝑖𝑝𝑒. 𝑋𝑜𝑣𝑓
𝑎𝑚𝑏) + (𝜌𝑔

𝑎𝑚𝑏 . 𝑉𝑝𝑖𝑝𝑒. (1 − 𝑋𝑜𝑣𝑓
𝑎𝑚𝑏)) [lb]

Calculating the total mass released

𝑚𝑟𝑒𝑙 = 𝑚𝑡𝑜𝑡
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑚𝑡𝑜𝑡

𝑎𝑚𝑏 [lb]

Calculating the gas mass fraction at standard conditions

𝑋𝑔𝑚𝑓
𝑠𝑡𝑐 =

1

1+
𝜌𝐿

𝑠𝑡𝑐.5.614583

(𝐺𝑂𝑅.𝜌𝑔
𝑠𝑡𝑐)

 [-]

Calculate the volume of oil releases. Also, this is the basic formula.

𝑉𝑃𝑟𝑒−𝑆ℎ𝑢𝑡 =
𝑄.𝑡

1140
 [bbls]

Calculating the volume of oil released. This equation has taken from the

advanced formula.

𝑉𝑟𝑒𝑙
𝑠𝑡𝑐 = 0.1781.

𝑚𝑟𝑒𝑙(1−𝑋𝑔𝑚𝑓
𝑠𝑡𝑐)

𝜌𝑜
𝑠𝑡𝑐 + 𝑉𝑃𝑟𝑒−𝑆ℎ𝑢𝑡 [bbls]

3.2.2.2. Volume of Flow That May Occur after Valves Shut-In

Following the detection of a leak in oil pipelines, valves are promptly closed to

mitigate environmental pollution. Without any intervention, the flow of oil will

persist until the internal pressure of the pipe aligns with the external pressure, as

previously discussed. The total volume of oil confined between two valves can be

determined using the formula

𝑉𝑝𝑖𝑝𝑒 = (
𝐼𝐷𝑃𝑖𝑝𝑒

24
)

2

. 𝜋. 𝐿𝑝𝑖𝑝𝑒 [𝑓𝑡3]

12

However, it is essential to note that not all of this volume will spill. The specific

volume of oil that will be discharged from the trapped space between two valves

can be calculated through GIS analysis.

13

Figure 1. Flow Chart of Pipeline Spill Value Calculation

14

A Python-based algorithm utilizing a PostgreSQL database and GIS has been

developed to analyze the volume of oil that will be discharged after the closure of

valves. The algorithm's working principle can be comprehensively understood by

reviewing its step-by-step process, as depicted in Figure 1.

Step 1: Input data supply

DEM data of the target region, pipeline vector drawing with coordinates, and leak

location coordinates on the pipeline are provided as input.

Step 2: Overlapping Pipeline Geometry and DEM Data

The pipeline geometry and DEM data are overlapped to identify the areas where

they coincide.

This overlapping process helps segment the pipeline based on the DEM data.

Step 3: Intersection with Starting Point and Reference Value Recording

The DEM data is intersected with the starting point of the pipeline.

A randomly selected segment, either in the right or left direction, is designated as

the processed segment.

The height value at the intersection point is recorded as the reference value.

Step 4: Calculation of the Volume for the Selected Segment

The volume of the selected pipeline segment is calculated.

This volume is recorded as the total leakage volume.

The selected segment is marked as processed to avoid redundancy.

15

Step 5: Loop for Segment Inspection

The algorithm enters a loop to inspect all parts of the pipeline route segmented

with DEM data.

This loop iterates through the following sub-steps:

a. Sub-step 5a: Check if Segment Has Been Processed

The algorithm checks whether the selected segment has been processed before.

If it has not been processed, a new segment is randomly selected, and the loop

restarts from Step 5.

If it has been processed, the algorithm proceeds to the next sub-step.

b. Sub-step 5b: Geometric Touch Check

The algorithm checks whether the loop segment geometrically touches the

processed segment.

If there is no touch, a new unprocessed segment is randomly selected, and the

loop restarts from Step 5.

If there is a touch, the algorithm moves to the next sub-step.

c. Sub-step 5c: Path Update and Volume Calculation

Within each iteration of the loop, the algorithm updates the path based on the

height value of the processed segment.

If the height value of the processed segment is smaller than the reference height

value, the path is updated.

If the height value is greater than or equal to the reference value, the height of

the processed segment becomes the new reference height value.

The volume of the processed segment is calculated, and the total leakage volume

value is added to this volume.

The newly calculated volume is recorded as the total leakage volume.

The processed segment is marked as selected, and the loop restarts with the

newly selected segment.

16

Step 6: Switching to Unselected Direction

After inspecting all segments in one direction, the algorithm switches to the

unselected direction (right or left).

The height value of the intersection point between the DEM data and the starting

point is reassigned as the reference value.

Step 7: Repeating Step 5 for the New Direction

The loop described in Step 5 is repeated for the newly selected direction.

The algorithm goes through the same sub-steps described in Step 5 for the new

direction.

By following these steps, the GIS-based algorithm, in conjunction with the

PostgreSQL database and Python programming language, determines the

volume of oil that will flow after the valves are closed. The algorithm considers

the DEM data, pipeline geometry, and the coordinates of the leak location to

estimate the total leakage volume accurately.

The developed Algorithm has been applied to a pipeline segment whose

elongation section representation is like Figure 2.

Figure 2. How Pipeline Spill Value Calculate (color shows height).

17

The application yielded anticipated and satisfactory outcomes when executed in

both the right and left directions, starting from the specified leak point. In Figure

3, the regions highlighted in red represent areas where oil is projected to be

discharged. Conversely, the green-colored regions indicate the oil segments that

remain due to the influence of the topographical features, as depicted in Figure

3.

3.3. Horizontal Distribution Of Oil Spill On Surface

Several widely recognized hydrology analyses based on Geographic Information

Systems (GIS) exist, including flow direction, flow accumulation, and sink

detection algorithms. While these analysis methods may appear relevant to

onshore oil spills based on their names, they are not directly applicable to such

scenarios. These algorithms typically operate by uniformly evaluating equal

amounts of water drops across each Digital Elevation Model (DEM) cell and

analyzing all cells. They are commonly utilized for flood modeling or extracting

topographical features, such as ridges, stream channels, or depressions [10].

In the context of terrestrial oil spills, they typically occur due to pipeline cracks or

unintentional accidents on drilling rigs, resulting in a gradual spread of the spilled

liquid across the affected area. This process involves gradually releasing an exact

Figure 3. The Result of Pipeline Spill Value in Chart

18

quantity of oil, and progressively dispersing it into the surrounding ground from a

specific location. Consequently, the application of conventional hydrological

algorithms, as previously mentioned, proves inadequate in addressing the unique

characteristics of an oil spill.

The primary criterion for accurately determining the route of an oil spill lies in

identifying the presence of depressions or holes in the flow path. In such

instances, the spilled liquid accumulates until its height aligns with that of the

depression. Generally, oil flows downhill from higher to lower elevations.

Consequently, when employing a GIS-based solution to simulate an oil spill, the

liquid consistently follows the path of the lowest neighboring cell. However, if all

neighboring cells possess higher elevations than the current cell, the oil

accumulates to a height equivalent to that of the lowest neighboring cell before

proceeding further.

The soil's absorption rate is another critical factor influencing the length and

extent of the oil spill's flow path. Various soil types exhibit distinct absorption

capacities, determining the amount of liquid absorbed. In a GIS-based analysis,

it is possible to define the absorption rate of the liquid based on the specific soil

type within a given unit area. This information helps refine the simulation model,

providing a more accurate representation of the oil spill's behavior.

Additionally, it is important to consider various factors contributing to reducing the

spilled oil volume. These factors may include evaporation, attachment of oil to

vegetation within the soil, small cracks in the ground, and other similar

phenomena. These losses should be considered to provide a more realistic

estimation of the oil spill's impact.

The oil spill analysis algorithm should be designed to terminate when the

cumulative losses along the spill path exceed the initially considered volume of

19

oil. This ensures the simulation accurately reflects the real-world scenario and

prevents overestimating potential impacts.

By considering these specific parameters and incorporating them into a

comprehensive GIS-based analysis, it becomes possible to simulate the path and

behavior of an oil spill, thereby facilitating more accurate assessments of the

spill's potential impacts on the surrounding environment and enabling the

development of effective response strategies.

Oil spill analysis was coded using the arcpy library on ArcGIS by following the

steps below (Figure 4).

1. In the initial stage of this analysis, various inputs are fed into the application.

These inputs consist of Digital Elevation Model (DEM) data, information on the

volume of the oil that has leaked, a map detailing different soil types in the area,

and where the leak started. These inputs serve as a basis for the algorithm to

conduct its operations.

2. The second step involves integrating the DEM data and the soil type map to

create a surface model. This model illustrates the terrain's elevation and the type

of soil found at each location. This is achieved by conducting an intersection

analysis within the Geographical Information System (GIS), which overlays the

two data types to create a combined visual representation. The rectangular pixels

may become somewhat distorted at this stage due to the complex interactions

between different data layers. However, such distortion is considered insignificant

for this algorithm.

3. Following this, an intersection analysis is performed between the leak's starting

point and the DEM data within the GIS. This process identifies the pixel where

the leak starts and tracks its path on the model. The elevation value of this pixel

is then noted down and set as the reference height for further steps in the

algorithm.

20

4. The algorithm then runs in a loop until the total volume of the leak, calculated

by the system, meets or exceeds the leaked volume input at the beginning of the

process. The various steps within this loop are as follows:

 a. The algorithm first identifies the pixel with the smallest elevation value along

the path of the leak. The elevation value of this pixel is then set as the reference

height for the next stage of the algorithm.

 b. If other pixels along the leak path have an elevation equal to the reference

height, they are marked as the reference path. The algorithm then goes into an

iterative process, examining the surrounding pixels and adding any with equal

height to the reference path. This is performed using an endless loop or a

recursive function, a coding technique that allows a function to call itself. This

process is akin to a breadth-first search algorithm, a strategy for searching in a

graph when breadth (neighbors to a node) is prioritized before depth (children of

a node).

 c. At this stage, the algorithm calculates the volume of oil accumulated in pixels

with a height less than the reference height along the leak path. This is computed

by multiplying the pixel area being processed by the difference between the

reference height and the height of the pixel in question. The formula can be

written as:

 Pixel-based Puddle Volume = Area of the Processed Pixel * (Height of

Reference Pixel - Height of the Processed Pixel)

 d. The algorithm then calculates the amount of oil absorbed by each section of

the DEM, based on the unit volume absorption amount for the specific type of soil

in that location.

 e. At this point, the algorithm accounts for additional losses due to small surface

cracks, evaporation, and oil adhering to vegetation. This is done by defining a

constant loss parameter proportional to the calculated path length. The total

losses are then calculated by multiplying the path length by the constant loss

parameter.

21

 f. The loop is terminated as soon as the combined volumes of oil lost in steps

c, d, and e meet or exceed the total volume of the oil leak as given in the input

parameters.

In the developed Algorithm, the soil type is an optional parameter. A fixed

absorption rate is given if this data does not exist.

Figure 4. The Algorithm of Horizontal Oil Spill Distribution

22

3.3.1. Lowest Neighbor Problem

In the realm of raster-based analysis, there are fundamentally two ways in which

we define a pixel's neighbors, the '4-pixel neighborhood relation' and the '8-pixel

neighborhood relation'.

When explain to the 4-pixel neighborhood relation, In this case, each pixel is

viewed in relation to its four immediate neighbors, situated in the cardinal

directions of North, South, East, and West. If single pixel with coordinates (x, y)

are taken into consideration, its neighbors would be found at the coordinates (x,

y+1) for the pixel to the North, (x, y-1) for the pixel to the South, (x+1, y) for the

pixel to the East, and finally, (x-1, y) for the pixel to the West (top image in Figure

5). Only the pixels that share an edge with the central pixel are considered

neighbors in this configuration.

On the other hand, the 8-pixel neighborhood relation expands the concept of a

pixel's neighbors to include those pixels that share a vertex with the central pixel.

Those pixels situated diagonally to the central pixel must also be considerated.

Figure 5. Pixel Neighborhoods

23

In addition to the four coordinates detailed in the 4-pixel neighborhood relation,

the neighbors would also include (x+1, y+1) for the pixel to the Northeast, (x+1,

y-1) for the pixel to the Southeast, (x-1, y-1) for the pixel to the Southwest, and

(x-1, y+1) for the pixel to the Northwest (bottom image in Figure 5).

In the realm of oil spill analytical studies, the traditional understanding of

neighboring pixels undergoes a transformation. Within this domain, our focus isn't

solely on stationary pixels. Instead, we delve into pixels that craft an ever-evolving

and enlarging trajectory. As the oil spill proliferates, so does the trajectory, and

concomitantly, the neighboring pixels amplify in quantity, undergoing dynamic

modifications as the trajectory integrates novel pixels (Figure 6).

Should one approach the study of oil spill analytics through the conventional lens

of raster-oriented trajectory discernment, it would necessitate a perpetual

documentation of coordinates pertaining to all adjacent pixels. With each

inclusion of a fresh pixel into the spill trajectory, such documentation demands

revisions to reflect the evolving vicinity of the impacted pixels. Such an approach

would undeniably introduce heightened computational intricacy due to the

perpetually mutable data.

An optimized methodology can be employed to circumvent this computational

intricacy: transmuting Digital Elevation Model (DEM) data into a vectorial format,

including their altitudinal metrics. The vectorial data paradigm, employing

vertices, lines, and polygons for terrestrial representation, typically offers

enhanced adaptability and is adept at encapsulating intricate geospatial attributes

with heightened accuracy compared to its raster counterpart. This

metamorphosis ensures the retention of pivotal data for oil spill analytics without

the computational challenges inherent in incessant updates of adjacent pixel

data.

24

3.3.2. Oil Puddle Problem

In addressing the critical issue of oil spills, there is a key parameter to be identified

and understood—'barrier pixels'. In the context of an oil spill, 'barrier pixels' refer

to specific digital markers on the spill's path. Each spill region is represented as

a pixelated grid, with each pixel given a numerical value that signifies its 'height'

or relative elevation.

A unique trait that distinguishes barrier pixels is their role in fluid accumulation.

Drawing parallels with a dam or blockade, these barrier pixels retain the oil spill

until such a point when the 'height' of the leaked oil behind them matches their

own height value. At this juncture, just like a dam at capacity, the oil begins to

overflow and continues along its path.

In fluid accumulation, the height of the neighboring pixels plays a crucial role. This

procedure particularly involves the pixel with the smallest height value among the

neighbors. Fluid builds up when this pixel's height is larger than the previously

processed pixel's height. The quantity of this buildup is ascertained by the

difference in height values between the barrier pixel and the pixel processed

Figure 6. Neighbor Relation in Horizontal Oil Spill Distribution

25

before it. This difference measures the amount of fluid accumulating before

reaching the barrier pixel's 'capacity' and spilling over.

As the fluid, or oil, permeates through the grid, each pixel on the predicted route

carefully inspects its height value. Intriguingly, fluid accumulation will occur in

every pixel with a height less than that of the last identified barrier pixel. This

behavior is analogous to the natural fluid movement across varying elevations,

which flows from higher to lower regions until a barrier is surpassed.

To illustrate this, consider an image-based scenario. After processing a pixel with

a value of 98, it is found that all the neighboring pixels have a higher value than

98. This scenario signals the commencement of fluid accumulation up until the

height of the smallest neighboring pixel. In this instance, the smallest neighboring

pixel has a height of 104. Consequently, the pixel with a height of 98 will

accumulate 6 meters of fluid, computed by subtracting 98 from 104. Similarly, a

pixel with a height of 100 will accumulate 4 meters of fluid, representing the

difference between 104 and 100 (Figure 7).

Figure 7. Oil Puddle Problem

26

In essence, understanding the behavior of barrier pixels and the dynamics of fluid

accumulation is an essential part of mitigating oil spills. This detailed explanation

enhances comprehension of the mechanisms at play in this context, supporting

effective strategies to manage and reduce the environmental impacts of oil spills.

3.3.3. Neighbor's Neighbor Problem

In real-world scenarios, liquid, like water or oil, typically flows along a gradient

from higher elevations to lower ones. This principle is echoed in Geographic

Information Systems (GIS), where the motion of liquid is modelled from higher to

lower cells within a grid representing the terrain. An essential factor to consider

while calculating this flow direction is the treatment of flat cells within the Digital

Elevation Model (DEM), which represents the surface of the Earth in a digital

format.

In the DEM, cells are essentially pixels assigned specific elevation values. In

cases where multiple cells within the neighborhood share the same elevation, the

fluid is modeled to traverse these flat cells. This scenario resembles how water

would flow over a flat surface in the physical world, distributing itself evenly across

the plane.

Our analytical process necessitates a further step after identifying the lowest

pixels on the fluid's projected path. Neighbouring cells with the same elevation

values as these lowest path pixels must be examined. This inspection aims to

determine whether these equal-elevation cells are adjacent or connected to the

flow path pixels, implying that they form part of the boundary of the fluid's path.

This step serves to extend the currently calculated flow path. It acknowledges

that fluid won't necessarily follow a strict path of descending elevations, but might

also spread laterally across areas of the same height. By doing so, we ensure

27

that our model accurately reflects the potential for fluid to spread across equal

elevations.

Let's examine an illustrative example to clarify this concept further. Consider an

image that represents the flow of a liquid from an area with an elevation value of

107 to an area with a value of 94. A pixel with 96 (represented in green) has been

processed on this image. The next step in our application would be to designate

cells with an elevation value of 95 (shown in yellow) as part of the projected flow

path.

However, our task does not end here. All neighboring cells of these 95-value cells

must also be examined to determine if any other cells have an equal elevation

value of 95. These cells form part of the flow path since the fluid can spread to

these areas. This way, the flow path is expanded to include these same-elevation

cells, providing a more comprehensive understanding of the fluid's trajectory

(Figure 8).

Figure 8. Neighbor's Neighbor Problem

28

3.3.4. Soil Absorption and Saturation Problem

Within oil spill mitigation, the volume of oil or 'liquate' that flows over a given

terrain is influenced by several crucial parameters. Among them, the formation of

oil puddles, the absorption capabilities of the soil, and the saturation level play

significant roles. A profound understanding of these components can

substantially enhance the prediction and control of oil spills.

The first parameter, oil puddles, pertains to oil accumulation in certain parts of

the terrain. This concept elucidates how oil, rather than distributing uniformly over

the surface, tends to gather and form 'puddles' or pools in specific areas,

especially in depressions or low-lying regions. Understanding the formation and

behavior of these oil puddles is crucial as it affects the volume of oil that spreads

during a spill. Calculating the volume of these puddles essentially involves

determining the depth and surface area of these pools, which can then be

combined to derive the volume of oil contained within.

The next parameter revolves around the absorption or retention capacity of the

soil. This characteristic can differ substantially based on the soil type or lithology.

Different soils have varying capacities to absorb or hold oil, directly affecting the

volume and direction of the oil flow. Recognizing this, leveraging lithology - the

study of general rock physical characteristics - can produce more accurate

predictions of oil flow paths.

Saturation plays a pivotal role in influencing the behavior of oil spills. Notably, an

inverse relationship exists between saturation and absorption. When the

saturation level of a terrain rises, its absorption capacity diminishes. This

phenomenon is because a highly saturated surface has reached its holding limit,

leaving minimal room for further absorption. By adjusting the absorption rate,

control over saturation can be achieved. For example, heightening the absorption

value decreases saturation, while reducing it leads to increased saturation. This

29

balance between absorption and saturation is a key determinant in managing the

behavior of oil spills on a terrain.

In the computational model tailored for oil spill analysis, two options are provided

to account for soil absorption. The first option is useful if detailed soil type maps

are available. Users can then employ specific water holding values from

experimental studies or prior academic research, reflecting the accurate

absorption capacities of various soils, enhancing the model's precision.

The second option, more streamlined, is utilized when detailed soil type

information isn't available. Here, a constant value, representing a standard soil

water holding capacity, is defined. This value applies uniformly across the model,

offering a generalized estimate of the soil's absorption ability. While not as exact

as soil-specific data, this approach still furnishes a practical approximation for oil

spill prediction and management.

3.3.5. Algorithmic Oil Path Results

Calculating the leakage volume and tracing the path of leaks in oil pipelines are

critical for sustainable environmental policies. Another significant aspect of this

research is conducting these calculations prior to the emergence of potential

issues, thereby enabling the implementation of preventative and protective

measures.

The algorithm for calculating leakage volume in oil pipelines proves extremely

valuable for pipeline operators in deciding the location of valves, as it operates

throughout all points of the given pipeline. Furthermore, once the valve locations

are marked on the same algorithm, rerunning the algorithm will allow observation

of the potential impact of the proposed valve.

30

The path calculation algorithm can be applied to all points on the oil pipeline (with

submillimeter horizontal resolution) by incorporating a loop into the existing

algorithm. However, it should not be overlooked that this process will take a

certain amount of time, depending on the length of the oil pipeline and the

processing power of the computer being used. The determined leakage path can

be cross-analyzed with water sources around the oil pipeline on a GIS basis,

which will be useful in deciding where and how to take precautions against

potential environmental disaster scenarios.

Figure 9 illustrates a scenario where lithology data is not available. It visually

represents elevation values obtained from DEM data, denoted by black numbers.

The flow path cells within the blue boundaries indicate the water's path. Within

the flow path, the top number indicates the sequential order of the flow direction,

ranging from 1 to 23 cells. Red numbers also represent the accumulation amount

at the bottom of the flow path. This depiction allows for a clear understanding of

the flow direction and the corresponding accumulation values associated with

each step along the path.

31

Figure 10 demonstrates the flow path direction when soil type data is available.

To incorporate the soil information, the pixels in the image are divided into smaller

segments. Each segment represents a different type of soil, characterized by

varying absorption rates. The flow path pixels are highlighted in different colors,

with each color corresponding to a specific soil type. This color-coded

representation aids in visualizing the flow path and identifying the distinct soil

types involved. Additionally, the red numbers below the flow path indicate the

Figure 9. Oil Path Results without Lithology Data

32

sequential order of progress for the individual cells. By incorporating the soil type

data, this image provides valuable insights into the flow direction and the

influence of different soil characteristics on the overall hydrological process.

Calculating the leakage path when developing an algorithm for oil pipeline leaks

involves initially identifying a single direction from the starting point of the leak.

However, considering the possibility of dispersion at the starting point, it would

be beneficial to run the algorithm at multiple randomly selected points in areas

where a leakage risk is anticipated. This approach would enhance the accuracy

and effectiveness of the algorithm in identifying potential leak paths. In Figure 11,

the algorithm is executed at randomly selected points, and the results are

displayed with a color gradient representing the water accumulation levels,

Figure 10. Oil Path Results with Lithology Data

33

ranging from green to red. This color-coding effectively illustrates the varying

degrees of water accumulation at different points along the pipeline, providing a

clear visual representation of the potential impact areas in the event of a leak

Figure 11. Multiple oil spill directions

34

4. EXPERIMENTAL STUDY

In the "Oil Spill Modelling and Volume Calculation" section, an experimental study

has been conducted using photogrammetric methods to test the algorithm

described.

4.1. What is Photogrammetry Briefly

Photogrammetry is a complex scientific method that uses sources of

electromagnetic radiation, especially photographs, to determine the positions and

measurements of objects or areas. Its mathematical foundation is based on

geometric and projection equations to process the information from the

photographs [11].

This method is widely used in remote sensing, mapping, geographic information

systems, urban planning, and many other fields. It processes data from

photographs to create three-dimensional (3D) models, maps, or other visual

outputs based on mathematical and geometric principles [11].

The key to this process is understanding and correctly applying the photographs'

internal and external orientation parameters. Internal parameters provide

information about how the photo was taken, defining camera calibration, lens

focal length, optical center position, and camera sensor characteristics. This

information provides insights about the camera's configuration at the time of the

shot [12].

External parameters provide information about where and in which direction the

photo was taken, giving details about the photo's geographical location, altitude,

and orientation. These parameters are crucial in determining the photo's position

and orientation in the real world.

35

Other essential elements of photogrammetric modeling are tie points and control

points. Tie points mark locations that correspond to the same object in two or

more photographs and help to relate the images. Control points are spots with

known coordinates in the real world and are identified in the photographs. They

ensure the accuracy of the model and align the created 3D model with real-world

coordinates. Along with these points, stereo image overlay is also vital. It is the

process of overlaying two photographs to get 3D depth information. This overlay

is possible when two photos overlap by a specific amount. Horizontally, the

overlap is not less than typically 60%, and vertically, it is not less than 30% [13].

These overlaps are necessary for accurate 3D data and help in correctly

matching the tie points.

In addition to these aspects, collinearity equations play a pivotal role in

photogrammetry. These equations describe the mathematical relationship

between the 3D coordinates of a point in the physical world and its 2D

representation in an image. Essentially, collinearity equations ensure that the

lines connecting 3D points to their 2D counterparts and the camera's perspective

center are co-linear. This implies that if you extend a line from the camera's lens

through a point in the image, it will intersect with the actual location of that point

in the physical world. This fundamental principle is crucial for accurately

transforming and correlating the 3D and 2D spaces, enabling precise

measurements and modeling in photogrammetric applications. By rigorously

applying these equations, photogrammetry can achieve high levels of accuracy

in mapping and modeling various environments, whether it's for topographical

mapping, architectural studies, or archaeological documentation.

𝑥𝑎 = 𝑥𝑝 − 𝑐
𝑟11(𝜒𝐴 − 𝜒0) + 𝑟21(𝑌𝐴 − 𝑌0) + 𝑟31(𝑍𝐴 − 𝑍0)

𝑟13(𝜒𝐴 − 𝜒0) + 𝑟23(𝑌𝐴 − 𝑌0) + 𝑟33(𝑍𝐴 − 𝑍0)
+ 𝑑𝑖𝑠𝑡𝑥

𝑦𝑎 = 𝑦𝑝 − 𝑐
𝑟12(𝜒𝐴 − 𝜒0) + 𝑟22(𝑌𝐴 − 𝑌0) + 𝑟32(𝑍𝐴 − 𝑍0)

𝑟13(𝜒𝐴 − 𝜒0) + 𝑟23(𝑌𝐴 − 𝑌0) + 𝑟33(𝑍𝐴 − 𝑍0)
+ 𝑑𝑖𝑠𝑡𝑦

(1)

(2)

36

In the collinearity equations formula (1) and (2);

𝑥𝑎 and 𝑦𝑎 stands for image coordinates

𝑋𝐴, 𝑌𝐴 and 𝑍𝐴 describes for ground coorinates

𝑋0, 𝑌0 and 𝑍0 are external orientation parameters

𝑥0, 𝑦0 and c defines internal orientation parameters

𝑑𝑖𝑠𝑡𝑥 and 𝑑𝑖𝑠𝑡𝑦 are for coefficients

Recently, photogrammetry has been used for aerial photos, satellite images,

drone shots, and even smartphone cameras. Advances in technology, new

algorithms, and software have made photogrammetry faster, more accurate, and

accessible. Moreover, it's used in processing high-resolution, multi-band images,

surface modeling, vegetation analyses, and even restoration of historical

structures. All in all, photogrammetry is an indispensable method to extract metric

information about the Earth from photographs.

4.2. Study Site and 3D Photogrammetric Models

The experimental study was conducted at the Çankaya location in Ankara. The

objective of the experimental study was to recreate a miniature simulation of a

real petroleum leak and to evaluate the outputs of a designed algorithm within

this context. For this purpose, artificial barriers on the project site have been

cleared, making the area ready for application. On the site, 10 control points have

been marked with the help of GPS to cover the route of the experimental oil spill.

Initially, around 70 high resolution photos were taken with a Canon D5700 to

create a DEM (Digital Elevation Model) of the empty surface. After the flow was

complete, another set of 70 photos was taken with the same camera for creating

orthophoto.

The study utilized 2 liters of gasoline with the aim of accurately simulating a real

petroleum leak. The designated area for the experiment was approximately 1

meter in width and 3 meters in length. Control points' positions were measured in

37

10-minute intervals using GNSS receivers that can connect to the CORS

(Continuously Operating Reference Stations) network. When these benchmark

points were balanced, the observed total error was found to be less than 7mm.

In photogrammetric applications, marking the control points in the captured

images resulted in a pixel-based total error observed to be less than 0.5 pixels.

Figure 12 displays the control points on the orthomosaic created after the

completion of the leak.

For each of the two applications 2 photogrammetric models (before and after

leak) were generated using Agisoft Metashape. Figures 13 and 14 display the

positions of the captured images.

Figure 12. Error values calculation for the model after the leak

38

Figure 13. Image and Photogrammetric Benchmarks Locations Before Spill

Figure 14. Image and Photogrammetric Benchmarks Locations After Spill

4.3. Camera Calibration and Geneartaing 3D Modeling

Researchers at Hacettepe University have decided to employ the Agisoft

application for orthophoto and DEM production due to its convenience in both

licensing and 3D modeling. After capturing images, a Nikon D5200 with an 18mm

39

focal length, camera calibration was performed following the guidelines provided

in Agisoft's documentation. A wide-screen monitor was utilized to display a

marked chessboard pattern consisting of black and white squares, referred to as

a calibration target. At least 10 images of the calibration target were taken from

different angles.

By adhering to the given instructions, the necessary parameters for camera

calibration were calculated. These calibrated parameters will be used for further

processing in the experimental study.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

<?xml version="1.0" encoding="UTF-8"?>

<calibration>

 <projection>frame</projection>

 <width>6000</width>

 <height>4000</height>

 <f>4607.5382883548918</f>

 <cx>32.819561268028032</cx>

 <cy>-57.553519603999511</cy>

 <b1>0.21571805957467546</b1>

 <b2>1.2697168315769469</b2>

 <k1>-0.10760831260001989</k1>

 <k2>0.043125633396674516</k2>

 <k3>-0.040769766940518273</k3>

 <k4>0.03668132188938427</k4>

 <p1>0.00010069941101074302</p1>

 <p2>-0.00064595178360849035</p2>

 <date>2023-07-16T05:40:52Z</date>

</calibration>

Table 1. Camera Calibration Paramters

4.4. Evaluating Oil Spill Route Using With Developed Algorithm

The present study involved the development of an algorithm utilizing the ArcGIS

platform to detect pathways of petrol leakage. The analysis and interpretation of

outcomes relied upon the DEM data and orthomosaic image generated via the

Agisoft software. To accommodate the algorithm's requirement of a 16-bit pixel

depth within ArcGIS, the images were rescaled to match this pixel depth.

40

Furthermore, the horizontal resolution of the DEM produced in Agisoft was initially

observed to be around 1mm, which was deemed excessively high for achieving

the algorithm's optimal performance. Furthermore, the horizontal length of the

petroleum leakage in the narrowest section on the orthomosaic has been

measured about 2cm and Considering that the error value of the control points

was approximately 0.7 millimeters, it was decided to use a horizontal resolution

of 1cm. The vertical resolution of the generated DEM data was scaled to 1mm for

the study, as a height change of 0.5 centimeters was calculated in the studied

area

Figure 15. Agisoft Dem Result

41

Figure 16. Orthomosaic image of the terrain before the gasoline was spilled

Figure 17. Orthomosaic image after the gasoline was spilled.

42

Figure 18. Generated Dem and Orthomosaic in ArcGIS

4.5. Experimental Study Results

The DEM and orthomosaic image generated using Agisoft were opened in the

ArcGIS program (Figure 15). After the flow was completed, the leakage pathway

was digitized using polygon geometry on the produced orthomosaic.

Subsequently, the developed algorithm was applied to the re-evaluated DEM

data to calculate the algorithmic flow pathway. The actual leakage pathway

obtained from the orthomosaic was then compared with the leakage pathway

generated by the algorithm (Figure 17).

43

 Figure 19. Experimental Study Steps

When comparing the results obtained through the algorithmic calculations with

the real-world petroleum leakage route, the following conclusions have been

drawn; the algorithm was able to achieve an accuracy of 84.75% when predicting

the 2.5-meter-long real-world petroleum leakage route by analyzing 295 pixels

out of which 250 pixels intersect with the actual route (Figure 20-21).

44

Figure 20. Compresion of Algorithmic and Real Spill Path

Figure 21. Results of Algorithmic and Real Spill Path

When the reason for the 84% error coming from was examined, it was seen that

this problem was caused by the "Neighbor's Neighbor Problem" explained in

section 3.3.3. While the algorithm determines pixels of equal height along the flow

route, pixels with the same height are also included in the process due to vertical

resolution. It was determined that when these pixels were excluded from the

45

calculation, the pixel accuracy of the model in determining the route increased to

93%. During the process, pixels that were outside the route but provided the

connection were included in the calculation (Figure 22-23)

Accuracy Before Excluding

Erroneous Pixels

Accuracy After Excluding

Erroneous Pixels

Accuracy %84 %93

Table 2. Final Oil Spill Result Table

46

Figure 22. Oil Path Analysis Map

47

Figure 23. Flow Route Selection Order

48

5. CONCLUSION

In conclusion, this study has demonstrated the immense potential of

Geographical Information Systems (GIS) base programming in planning oil

pipeline routes and predicting potential oil spills. The research has first revealed

how to find the optimal pipeline route that minimizes topological and geographical

complexities. This approach ensures both environmental preservation and socio-

economic sustainability. Moreover, the study examines how a determined volume

of oil would spread on land surfaces, which will enable the implementation of

proactive measures to reduce environmental oil pollution. In both solutions,

unique algorithms were developed to enhance route optimization and spill route

prediction.

This study has highlighted the importance of topographic classifications during

pipeline route selection. These classifications involve identifying distinctive

features such as ridges, flatlands, steep terrains, and water channels within a

specific area, utilizing advanced GIS analyses. Also, the study has sought to

understand the landscape as a continuous unit rather than seeing these

components as discrete parts. In addition, the study has also introduced a simple

pipeline path by removing complicated patterns and avoiding needless extra

turns by using a line simplification algorithm. This strategy results in a more

practical and realistic approach toward pipeline construction by removing high

vertex points from the proposed route.

Reflecting on the study's results, significant enhancements in pipeline route

planning have been observed after the line simplification algorithm was applied

to the route. These enhancements include reducing the pipeline's total length

from 155.83 kilometres to a more efficient 148.99 kilometres, representing a

decrease in algorithmic cost of approximately 20%. This optimization has notably

improved the pipeline's interactions with environmental obstacles and barriers.

49

Furthermore, the findings demonstrate that the results based on topographic

classification have noticeably improved.

Furthermore, the research has exploited GIS technology, particularly Digital

Elevation Models (DEMs), and state-of-the-art algorithms to predict possible

pipeline leakages and spills. High-risk regions can be identified by assessing

terrain slope, pipeline pressure, and soil type. This proactive approach enables

effective emergency planning and better resource allocation and potentially

mitigates the environmental impact of oil spills. In addition to the above, the study

suggests that incorporating broader data sets, such as geological and lithological

data, could further enhance the accuracy of pipeline route planning and spill

prediction. The study also proposes intersecting the pipeline route with watershed

boundaries and evaluating the results. This approach could lead to the

identification of optimal valve locations, thereby enhancing the efficiency of the

pipeline system and reducing the risk of oil spills. However, a limitation of this

approach is that initially, the algorithm can identify only a single direction from the

leak's starting point. To address this, it is proposed to run the algorithm at multiple

randomly selected points in areas with anticipated leakage risks, thereby

improving the accuracy and effectiveness in identifying potential leak paths.

The results of the algorithm developed for predicting oil spills have been

simulated with real gasoile using photogrammetric acquisition. It has been

observed that the spill route calculated by the algorithm aligns satisfactorily with

the actual spill route. While the spill route was calculated with an 84% accuracy,

it has been found that when pixels miscalculated due to sensitivity are

disregarded; the accuracy increases to 93%.

This research has underscored the importance of merging GIS capabilities and

innovative algorithms in pipeline route planning and spill prediction, thus reducing

potential environmental damage from oil spills. The findings of this study can be

instrumental in enhancing the efficiency of pipeline planning and construction,

50

facilitating effective emergency planning, and mitigating the environmental impact

of oil spills.

Future research should continue to explore and refine these methods, further

improving the accuracy and efficiency of pipeline route planning and spill

prediction. There are widespread crude oil pipelines in the world and terrestrial

oil spill for crude oil can be added to the model. The behavior of crude oil,

influenced by its viscosity and interaction with different soil types, presents

complexities not covered in this study. This integration would greatly enhance the

research and could lead to more inclusive models for pipeline spill predictions.

51

7. REFERENCES

[1] S.E. Chang, J. Stone, K. Demes, M. Piscitelli, Consequences of oil spills

a review and framework for informing planning, Ecology and Society, 19 (2014).
[2] S.Z. Halim, M. Yu, H. Escobar, N. Quddus, Towards a causal model from
pipeline incident data analysis, Process Safety and Environmental Protection,
143 (2020) 348-360.
[3] R.D.C.F.S. Silva, D.G. Almeida, R.D. Rufino, J.M. Luna, V.A. Santos, L.A.
Sarubbo, Applications of Biosurfactants in the Petroleum Industry and the
Remediation of Oil Spills, International Journal of Molecular Sciences, 15 (2014)
12523-12542.
[4] M. Fahimipirehgalin, E. Trunzer, M. Odenweller, B. Vogel-Heuser, Automatic
Visual Leakage Detection and Localization from Pipelines in Chemical Process
Plants Using Machine Vision Techniques, Engineering, 7 (2021) 758-776.
[5] T. Spyridopoulos, T. Tryfonas, J. May, Incident Analysis & Digital
Forensics in SCADA and Industrial Control Systems, IET Conference
Proceedings, Institution of Engineering and Technology, 2013, pp. 6.1-6.1.
[6] G. Geiger, T. Hazel, D. Vogt, Integrated SCADA-based approach for pipeline
security and operation, 2010 Record of Conference Papers Industry
Applications Society 57th Annual Petroleum and Chemical Industry Conference
(PCIC), 2010, pp. 1-8.
[7] J.I. Chang, C.-C. Lin, A study of storage tank accidents, Journal of Loss
Prevention in the Process Industries, 19 (2006) 51-59.
[8] H. Ibrahim, Hazard Analysis of Crude Oil Storage Tank Farm, International
Journal of ChemTech Research, (2018).
[9] U.S.D.o.t. Interior, Pipeline Oil Spill Volume Estimator Paperback,
CreateSpace Independent Publishing Platform2015.
[10] S.K. Jenson, J.O. Domingue, Extracting topographic structure from digital
elevation data for geographic information-system analysis, Photogrammetric
Engineering and Remote Sensing, 54 (1988) 1593-1600.
[11] N.C. Noya, Á.L. García, F.C. Ramírez, Combining photogrammetry and
photographic enhancement techniques for the recording of megalithic art in
north-west Iberia, Digital Applications in Archaeology and Cultural Heritage, 2
(2015) 89-101.
[12] T. Luhmann, C. Fraser, H.-G. Maas, Sensor modelling and camera
calibration for close-range photogrammetry, ISPRS Journal of Photogrammetry
and Remote Sensing, 115 (2016) 37-46.
[13] H.A. Sadeq, Accuracy assessment using different UAV image overlaps,
Journal of Unmanned Vehicle Systems, 7 (2019) 175-193.
[14] F. 500, Global 500, Fortune 500, 2020.

52

ATTACHMENTS

APPENDIX 1 – Programming Leakage Volume from Oil Pipelines

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

CREATE TABLE public.petrol_demo

(

 gid integer NOT NULL DEFAULT

nextval('petrol_demo_gid_seq'::regclass),

 gridcode bigint,

 cap smallint,

 parca smallint,

 uzunluk numeric,

 hacim numeric,

 islem smallint,

 orig_fid integer,

 hesap numeric,

 geom geometry(MultiLineString,4326),

 CONSTRAINT petrol_demo_pkey PRIMARY KEY (gid)

)

Table 3. Creating Leakage Volume Table on PostgreSQL

53

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

#!/usr/bin/env python

#-*-coding:utf-8-*-

import psycopg2

from datetime import datetime

startTime = datetime.now()

Database connection setup

baglanti_text = "dbname=A_petrol" + " " + "user=postgres" + " " +

"password=postgres" + " " + "port=5432"

table = 'petrol_demo'

conn = psycopg2.connect(baglanti_text)

db = conn.cursor()

Query to count the number of rows in the table

sorgu = 'SELECT count(*) FROM [14];'.format(table)

db.execute(sorgu)

conn.commit()

kac_oge_var = (db.fetchall()[0][0])

Function to find the next row to process

def islmid_bul(conn, db, table):

 # ...

 return islem_id, baslangic, yukseklik, hacim

Function to update the 'hesap' column of a specific row

def math_hesap(conn, db, table, id, hacim):

 # ...

Get initial values for processing

islem_id, baslangic, bas_yukseklik, bas_hacim = islmid_bul(conn,

db, table)

Function to retrieve neighboring row based on conditions

def komsuluk(conn, db, id, table):

 # ...

 return [bulunanid, yukseklik, hacim]

ikinci = 0

kactane = kac_oge_var

math_toplam_hacim = 0

yukseklk_maks = bas_yukseklik

Loop to process all parts of the pipe stored in the database

while True:

 # Check if the end of the loop is reached and reset variables

 if islem_id == -1:

 islem_id = baslangic

 yukseklik = bas_yukseklik

 yukseklk_maks = bas_yukseklik

 ikinci = ikinci + 1

54

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

 # Processing for the second iteration of the loop

 if ikinci == 2:

 # Assumption that approximately half the flow goes to the

pipe where the opening occurs

 math_toplam_hacim = math_toplam_hacim + (bas_hacim) / 2

 # Small value assigned to prevent errors when there is no

flow in the selected part

 if math_toplam_hacim == 0:

 math_toplam_hacim = 0.001

 # Update the 'hesap' column of the first part with the

calculated volume

 math_hesap(conn, db, table, islem_id, math_toplam_hacim)

 # Break the loop when all parts are processed

 if baslangic == kac_oge_var:

 break

 math_toplam_hacim = 0

 islem_id, baslangic, bas_yukseklik, bas_hacim =

islmid_bul(conn, db, table)

 ikinci = 0

 yukseklik = bas_yukseklik

 yukseklk_maks = bas_yukseklik

 # Find the next unprocessed neighboring part

 sonuc = komsuluk(conn, db, islem_id, table)

 islem_id = sonuc[0]

 yukseklik = sonuc[1]

 hacim = sonuc[2]

 # Update the reference height value if the current part's

height is higher

 if yukseklik >= yukseklk_maks:

 yukseklk_maks = yukseklik

 math_toplam_hacim = math_toplam_hacim + hacim

db.close()

Print the execution time of the algorithm

print(datetime.now() - startTime)

Table 4. Pipeline Spill Value Calculator Code in Python

For the algorithm to operate, it is imperative that the table named "petrol_demo"

is initially produced in the PostgreSQL database, using the provided code. The

resulting table should then be sectioned using the help of geographic analyses

into grid cells and filled as shown below. The code can be executed after the

Python database connection settings are configured.

55

gid: This represents the primary key of the table.

gridcode: This denotes the altitude value of each pipeline segment intersected

with the DEM (Digital Elevation Model).

cap: This signifies the pipeline's diameter and is used for volume calculations.

parca indicates the remaining sections between the installed valves on the

pipeline. For example, the part from the start to the first valve should be numbered

1, and the section from the first valve to the second should be numbered 2.

uzunluk: This is the length of the pipeline segment intersecting with the DEM.

hacim: This is the volume in cubic meters, calculated using the pipe's diameter

and length according to the cylinder volume calculation.

islem: This is used by the developed algorithm and stores whether an operation

has been previously performed on a cell. The default value to be entered in the

database should be 0.

orig_fid: This is a unique value given to each segment produced by intersecting

the DEM with the pipeline axis, but it is not used in the algorithm.

hesap: This is the result produced by the algorithm. It holds the calculation of the

total volume that will flow from the related part in both left and right directions.

geom: This is the path's geometry, held as a multiline string in geometry type.

56

When the code is executed with the related gids, the seepage flow caused by

gravity and topography will be calculated for each segment on the pipeline.

Upon execution, the algorithm generates an output as described above. When it

is necessary to rerun the algorithm, it is essential to reset the 'islem' and 'hesap'

columns to zero (Figure 24). This requirement is due to the logic based on the

developed algorithm.

Figure 24. The Result of Pipeline Spill Value in Database

57

APPENDIX 2 – Programming Horizontal Oil Distribution

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

import arcpy

arcpy.CheckOutExtension("Spatial")

arcpy.env.overwriteOutput = 1

The line where the starting point of the oil leak is taken as a

variable with arcpy

baslangic=arcpy.GetParameterAsText(0)

The line where the volume of oil subject to distribution is

defined with arcpy

petrol_miktari=float(arcpy.GetParameterAsText(1))

The rate of rise of oil according to horizontal resolution in

very high horizontal resolution dem data is defined with arpy, it

comes from the interface

hacim_orani=float(arcpy.GetParameterAsText(2))

The user defines whether to enter the lithology value from the

interface

litoloji_var_yok=arcpy.GetParameterAsText(3)

If lithology is not defined, the absorption amount based on a

stable pixel

pixel_emme=float(arcpy.GetParameterAsText(4))

mxd = arcpy.mapping.MapDocument("CURRENT")

pathmxd=(mxd.filePath).encode('utf8')

pathmxdlist=pathmxd.split("\\")

pathmxdlist.pop(len(pathmxdlist)-1)

pathmxd="\\".join(pathmxdlist)

workspace=pathmxd

arcpy.env.workspace=workspace

The starting point entered by the user is saved as shp

arcpy.FeatureClassToFeatureClass_conversion(baslangic,

workspace+r"\data\output", "baslangic.shp")

From the starting point, the dem value is cut from a region

where the most leakage will occur considering the dem horizontal

resolution and from now on, the transactions will be made on this

dem data

arcpy.Buffer_analysis(baslangic,workspace+r"\data\output\kesme_bu

ffer.shp","10 Kilometers","FULL","ROUND","ALL")

arcpy.gp.ExtractByMask_sa(workspace+r"\toolbox\tr_dem_wgs.tif",

workspace+r"\data\output\kesme_buffer.shp",workspace+r"\data\outp

ut\kesme_raster.tif")

The dem data in raster format is converted to vector format for

processes such as neighborhood analysis

arcpy.RasterToPolygon_conversion(workspace+r"\data\output\kesme_r

aster.tif", workspace+r"\data\output\calisma_alan.shp",

"NO_SIMPLIFY","VALUE")

New column structures below are added to the dem data converted

to vector format for calculations

arcpy.AddField_management(workspace+r"\data\output\calisma_alan.s

hp", "durum", "SHORT")

58

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

100

101

102

103

104

105

106

107

108

109

110

arcpy.AddField_management(workspace+r"\data\output\calisma_alan.s

hp", "yukselme", "FLOAT")

arcpy.AddField_management(workspace+r"\data\output\calisma_alan.s

hp", "alan", "FLOAT")

arcpy.AddField_management(workspace+r"\data\output\calisma_alan.s

hp", "biriken", "FLOAT")

arcpy.AddField_management(workspace+r"\data\output\calisma_alan.s

hp", "lito_emme", "FLOAT")

arcpy.AddField_management(workspace+r"\data\output\calisma_alan.s

hp", "sira", "SHORT")

Depending on whether the user shows the lithology value, the

dem converted to vector is divided into parts according to the

lithology layer. If lithology is not shown, the dem value is not

divided

if litoloji_var_yok=="Stabil Deger":

arcpy.MakeFeatureLayer_management(workspace+r"\data\output\calism

a_alan.shp", "dem_lyr")

else:

arcpy.Intersect_analysis([workspace+r"\data\litoloji.shp",workspa

ce+ r"\data\output\calisma_alan.shp"],

workspace+r"\data\output\calisma_alan2.shp", "", "" "")

arcpy.MakeFeatureLayer_management(workspace+r"\data\output\calism

a_alan2.shp", "dem_lyr")

The area value of each pixel is calculated, this value will be

used in accumulation operations

arcpy.CalculateField_management("dem_lyr",

"alan",'!shape.area@SQUAREMETERS!', "PYTHON_9.3")

The first pixel where the initial leak at the starting point

will start is found by intersection analysis

arcpy.SelectLayerByLocation_management ("dem_lyr", "INTERSECT",

baslangic,"","NEW_SELECTION")

f1 = "GRIDCODE"

liste_komsular=[]

for row in sorted(arcpy.da.SearchCursor("dem_lyr", [f1])):

 liste_komsular.append(row[0])

The pixel with the smallest height value among the pixels

touching the starting pixel is selected

min_yukselme=min(liste_komsular)

A value of 1 is assigned to the selected pixels indicating that

the operation has been performed and the height value of the

starting pixel is written to the elevation

arcpy.SelectLayerByLocation_management ("dem_lyr",

"BOUNDARY_TOUCHES", "","","NEW_SELECTION")

experssion = '\"GRIDCODE\" ='+str(int(min(liste_komsular)))

arcpy.SelectLayerByAttribute_management ("dem_lyr",

"SUBSET_SELECTION",experssion)

arcpy.CalculateField_management("dem_lyr", "durum",'1',

"PYTHON_9.3")

arcpy.CalculateField_management("dem_lyr",

"yukselme",'!GRIDCODE!', "PYTHON_9.3")

59

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

i=1

The loop enters until the total loss amount is greater than or

equal to the entered leak volume

while True:

 # The leak route on which the operation has been performed

is selected, the loss volume will be calculated on this selection

 arcpy.SelectLayerByAttribute_management ("dem_lyr",

"NEW_SELECTION",'"durum"=1')

 # Total loss volume due to lithology absorption and

accumulation is calculated

 if litoloji_var_yok=="Stabil Deger":

 arcpy.Statistics_analysis("dem_lyr",

workspace+r"\toolbox\tablo.gdb\sonuc", [["biriken",

"SUM"],["biriken","COUNT"]])

 f1,f2 = "SUM_biriken","COUNT_biriken"

 for row in

arcpy.da.SearchCursor(workspace+r"\toolbox\tablo.gdb\sonuc", [f1,

f2]):

 pass

 deger=row[0]+pixel_emme*row[1]

 else:

 arcpy.Statistics_analysis("dem_lyr",

workspace+r"\toolbox\tablo.gdb\sonuc", [["biriken",

"SUM"],["lito_emme","SUM"]])

 f1,f2 = "SUM_biriken","SUM_lito_emme"

 for row in

arcpy.da.SearchCursor(workspace+r"\toolbox\tablo.gdb\sonuc", [f1,

f2]):

 pass

 deger=row[0]+row[1]

 # If the total loss is greater than or equal to the leak

volume, it exits the loop

 if deger>=petrol_miktari:

 break

 # All the leak routes processed so far are found, all

pixels neighboring this route are selected

 arcpy.SelectLayerByLocation_management ("dem_lyr",

"BOUNDARY_TOUCHES", "","","NEW_SELECTION")

 arcpy.SelectLayerByAttribute_management ("dem_lyr",

"REMOVE_FROM_SELECTION",'"durum"=1')

 # The smallest pixel value among the pixels neighboring the

current leak route is determined

 f1 = "GRIDCODE"

 liste_komsular=[]

 for row in sorted(arcpy.da.SearchCursor("dem_lyr", [f1])):

 liste_komsular.append(row[0])

 min_yukselme=min(liste_komsular)

 experssion = '\"GRIDCODE\" ='+str(int(min(liste_komsular)))

60

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

 # All pixels with the smallest height value among

neighboring pixels are selected, these pixels will be assigned as

processed pixels later

 arcpy.SelectLayerByAttribute_management ("dem_lyr",

"SUBSET_SELECTION",experssion)

 onceki_sayi =

int(arcpy.GetCount_management("dem_lyr").getOutput(0))

 sonraki_sayi=onceki_sayi+1

 # It is checked whether there is a pixel value equal to or

smaller than the detected height value around the pixels with the

lowest height among the neighbors

 while True:

 if onceki_sayi>=sonraki_sayi:

 break

 onceki_sayi =

int(arcpy.GetCount_management("dem_lyr").getOutput(0))

 arcpy.SelectLayerByLocation_management ("dem_lyr",

"BOUNDARY_TOUCHES", "","","NEW_SELECTION")

 arcpy.SelectLayerByAttribute_management ("dem_lyr",

"REMOVE_FROM_SELECTION",'"durum"=1')

 arcpy.SelectLayerByAttribute_management ("dem_lyr",

"SUBSET_SELECTION",experssion)

 sonraki_sayi =

int(arcpy.GetCount_management("dem_lyr").getOutput(0))

 # All newly determined pixels are added to the leak route

 arcpy.CalculateField_management("dem_lyr", "durum",'1',

"PYTHON_9.3")

 # A sequence number is given to the selected pixels about

which order the operation was performed

 arcpy.CalculateField_management("dem_lyr", "sira",i,

"PYTHON_9.3")

 # If there are pixels with a height value greater than the

newly found minimum neighbor pixel height, there will be

accumulation in these pixels, the accumulation volume on the

detected route is calculated

 experssion = '\"durum\"=1 AND

\"yukselme\"<='+str(min_yukselme)

 arcpy.SelectLayerByAttribute_management ("dem_lyr",

"NEW_SELECTION",experssion)

 arcpy.CalculateField_management("dem_lyr",

"yukselme",min_yukselme, "PYTHON_9.3")

 experssion = "(!yukselme!-!GRIDCODE!)*!alan!"

 arcpy.CalculateField_management("dem_lyr",

"biriken",experssion, "PYTHON_9.3")

 # If the absorption value comes from lithology, the total

absorption in the pixels is calculated

 if litoloji_var_yok!="Stabil Deger":

 experssion = "!emme!"

 arcpy.CalculateField_management("dem_lyr",

"lito_emme",experssion, "PYTHON_9.3")

61

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

 i=i+1

 arcpy.AddMessage(i)

The calculated result information is recorded as soon as the

total loss amount is greater than or equal to the leak volume

arcpy.AddMessage(deger)

arcpy.SelectLayerByAttribute_management ("dem_lyr",

"NEW_SELECTION",'"durum"=1')

arcpy.FeatureClassToFeatureClass_conversion("dem_lyr",workspace+r

"\data\output", "cikti.shp")

arcpy.AddField_management(workspace+r"\data\output\cikti.shp",

"sonuc", "FLOAT")

arcpy.CalculateField_management(workspace+r"\data\output\cikti.sh

p", "sonuc",'!yukselme!-!GRIDCODE!', "PYTHON_9.3")

newlayer =

arcpy.mapping.Layer(workspace+r"\data\output\cikti.shp")

df = mxd.activeDataFrame

arcpy.mapping.AddLayer(df, newlayer, "TOP")

mxd.save()

Table 5. Horizontal Oil Distribution Code in Python

Figure 25. Interface of Oil Spill Distribution Application

Creating an interface within the arctoolbox environment is necessary to properly

function the provided code. This interface should include a graphical window

displaying a screenshot (Figure 25), allowing users to define input parameters. It

should be noted that the DEM and Lithology data are currently hardcoded into

the system, without any enhancements to facilitate their modification through the

interface.

