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AN ALGORITHM DEVELOPMENT OF TERRESTRIAL OIL 

SPILL MODELLING AND OIL VOLUME CALCULATION 

WITH GIS 

 

Calculation of oil droplet size distribution and surface oil spill modeling: 

experimental study and Algorithm development/ment 

ABSTRACT 

 

The oil spill has very hazardous effects on the environment. The spill caused by 

oil platforms and oil pipeline networks in water bodies kills thousands of marine 

creatures because oil pollution in the ocean destroys marine creatures' food 

sources and makes it hard to breathe and move. Moreover, the oil contamination 

devastates agricultural areas, and these lands become infertile on terrestrial 

sites. This type of contamination generally occurs in the same way as water body 

oil spills. The terrestrial oil spill has a danger of turning into the water-based oil 

pollution due to oil spill can reach water streams, freshwater sources, and seas. 

The excellent site of the oil spill is that the trigger point of pollution can be 

predictable because energy transportation companies know where oil pipelines 

lie down as petroleum exploration and production companies know the exact 

coordinates of drilling wells. To minimize the harmful effects of oil contamination 

on the land site, petroleum companies should prepare scenarios before the 

disaster happens. 

In this study, terrestrial oil spill volume and distribution route on the surface was 

modeled using Digital Elevation Model (DEM) on Geographic Information System 

(GIS) technology with its powerful tools on ArcGIS and PostGIS. At the end of 

the study, the volume of oil that will leak along the pipe route has been calculated 

according to the topography. Then the oil flow path with puddles location and 

accumulated oil volume is extracted before a possible oil spill happens. The study 

will help assess whether sites of oil pipeline valves are selected efficiently or not, 
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how much area will be affected by pollution, and whether oil reaches freshwater 

supplies. 

Keywords; modeling oil spills on land, terrestrial oil pollution analysis, oil path extraction, GIS 

1-INTRODUCTION 

Due to the necessity of oil, exploration technology, production sites, and 

companies' budgets have been expended. For example, Ultra-deep wells can go 

down to up to 8000 m. depth [1], US field production of crude oil was about 6700 

thousand barrels per day in 2008, but it increased to about 16500 thousand 

barrels per day in 2021 [2]. Five oil and two automobile companies were in the 

top 10 of the global fortune 500's 2020 list [3].  

Whereas negative impacts of petroleum products seriously threaten our future, 

we might not build our modern civilization without it. After petroleum started to 

use as an industrial material, we received benefits in various areas such as 

transportation, electricity, heating, cooling, and clothing [4]. In recent years, our 

society has been searching for alternative energy sources because 

environmental pollution and global warming will cause dramatically decrease not 

only in animals but also in human populations soon. Due to necessity and 

dependency, sharply getting rid of oil and its products seem impossible in a short 

period. 

Whether or not oil production has been done on a marine site, the petroleum 

refining process and a significant part of consumption have taken place in the 

terrestrial site. Most terrestrial oil spills occur during transportation. The leading 

causes of pipeline oil spills are faulty pipeline welds, landslides, equipment, 

operator-related causes, terrorist attacks, earthquakes, and corrosions [5, 6]. 

According to the CIA's factbook, there is more than 300,000 km of the oil pipeline 

in the world [7]. That means oil pipelines can cover about 7.5 times the world's 

circumference.  

Moreover, the total offshore pipeline length to the onshore pipeline is about 5% 

because the investment cost of an offshore pipeline is about three times higher 

and carrying out maintenance and repair activities for an underwater pipeline is 

harder [8]. 
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Total onshore construction (42,565 miles) beyond 

2013 will cost nearly $132 billion 

Total offshore construction (2,270 miles) 

beyond 2013 will cost more than $12 billion 

$2.9 billion for 4-10 inc. $558 million for 4-10 inc. 

$19.7 billion for 12-20 inc. $3.8 billion for 12-20 inc. 

$41 billion for 22-30 inc. $7.9 billion for 22-30 inc. 

 

Table form Oil & Gas Journal[8] 

The improving technologies in remote sensing allow detecting hydrocarbon 

accumulations, indicating visible and invisible oil seepage footprints. Visible-near 

infrared and short-wave infrared wavelengths can be used for invisible traces of 

oil seepage, and short and long wave infrared wavelengths can be used for the 

visible indicator of oil seepage [9-11]. Also, Synthetic Aperture Radar (SAR) can 

detect visible or invisible oil seepage existence [10-12]. 

Although terrestrial site oil pollution is at least as dangerous as the oil spill in 

water, there are many academic sources and risk modeling applications for the 

oil spill on water bodies [13-16]. Literature reviews show that researchers mainly 

focus on oil spill pollution's environmental impact on the land [17-19]. Some other 

researchers focus on how deep the leak can go, depending on the soil types at 

an incident with predefined or calculated oil volume [20-22]. These studies 

examined only the vertical distribution of the oil spill and evaluated whether the 

leakage could reach the aquifers or not. In other studies, GIS was used, 

researchers mostly modeled actual events, and after the oil spill, the impact of 

the environmental disaster was analyzed and mapped with actual variables [23, 

24]. This study supports the literature for providing necessary tools for identifying 

possible leaks on the terrestrial site. 

A GIS solution will calculate horizontal spill direction and possible spill volume on 

the ground. There are predefined flow direction and accumulation analysis tools 

on GRASS [25, 26] and ArcGIS [27, 28]. However, these analyses are not only 

enough for oil spills because flow direction and accumulation analyses calculate 

the flow directions of all pixels in the model and the total flood volume for the 

whole model [29]. Pipeline-induced oil spill starts from a single point and spread 
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ground from that location. Therefore, a new spill direction approach has been 

developed for onshore oil spill accumulation, similar to the D8 (eight directions) 

method on GRASS [25, 26] and ArcGIS [27, 28], having different neighborhood 

relations. Furthermore, the Algorithm developed via GIS tools for calculating the 

volume of oil that may leak will be examined in this study. 

 

3.  OIL SPILL MODELLING AND VOLUME CALCULATION 

Oil spills pose significant environmental and economic risks due to their potential 

to cause severe damage to natural ecosystems. Various factors contribute to 

onshore oil spills, with the primary causes being leaks at the drilling point, leaks 

in oil pipelines and storage tanks, and accidents during oil transportation. These 

incidents harm the environment, leading to long-term ecological degradation, 

harm to wildlife populations, and disruptions to local communities that rely on 

affected ecosystems for their livelihoods [1]. 

 

To effectively address these challenges, it is crucial to have accurate information 

about the location and volume of oil spills. In the United States, the US 

Environmental Protection Agency (USEPA) plays a pivotal role in registering and 

monitoring oil spill incidents, while in Europe, the European Environment Agency 

(EEA) fulfils a similar function. These agencies collect and analyze data on oil 

spill locations, volumes, and other relevant information, which are crucial for 

assessing the extent of damage and formulating effective response strategies. 

By studying historical spill data, patterns can be identified, enabling policymakers, 

industry professionals, and environmentalists to develop targeted measures to 

mitigate future spills. 

 

In addition to the USEPA and EEA, organizations such as the Pipeline and 

Hazardous Materials Safety Administration (PHMSA) in the USA and the 

European Gas Pipeline Incident Data Group (EGIG) in Europe specifically record 

and analyze pipeline spill data. These organizations are vital in monitoring 

pipeline integrity, identifying vulnerabilities, and implementing measures to 
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prevent leaks and spills. By gathering data on pipeline incidents, including causes 

and locations, these organizations contribute to a better understanding of the 

factors determining to onshore oil spills. 

 

Statistical information compiled by these agencies reveals that pipelines 

significantly cause both onshore and offshore oil spills. Pipeline failures can occur 

for various reasons, including corrosion, material defects, poor maintenance, or 

external factors such as excavation damage [2]. The risks associated with 

pipeline transportation necessitate developing and implementing stringent 

inspection and maintenance programs to detect potential weaknesses and 

address them promptly. Regular inspections, adherence to industry standards, 

and advanced technologies such as inline inspection tools and acoustic 

monitoring systems can help identify and mitigate potential pipeline failures 

before they result in spills. 

 

Furthermore, oil storage tanks represent another significant cause of onshore oil 

spills. These tanks, which store large quantities of oil for various purposes, can 

develop leaks due to structural weaknesses, inadequate maintenance, or 

improper handling [3]. Effective storage tank management practices, including 

regular inspections, proper maintenance, and secondary containment systems, 

are crucial to prevent spills. Additionally, implementing advanced technologies 

such as automated leak detection systems can provide early warning signals and 

enable swift response in case of tank failures. 

 

Although statistical information and records can be used to analyze the causes 

and consequences of oil spills, taking proactive measures before these events 

occur is paramount. Geographic Information System (GIS) analysis can play a 

significant role in achieving this. GIS integrates geographical data with analytical 

capabilities, allowing for identifying vulnerable areas and predicting potential spill 

scenarios based on topographic variables. GIS analysis can provide insights into 

the possible spread and distribution of oil leakage in horizontal and vertical 

directions by considering terrain features, elevation, and proximity to 
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environmentally sensitive areas. This information enables stakeholders to 

prioritize prevention efforts, target inspections, and maintenance activities, and 

develop effective emergency response plans tailored to specific locations and 

potential spill scenarios. 

 

Moreover, integrating GIS technology with predictive modeling techniques allows 

for a more accurate assessment of the potential volume of oil that could leak from 

pipeline cracks. By incorporating factors such as pipeline characteristics, flow 

rates, and environmental conditions, predictive models can estimate the potential 

volume of oil release and its dispersion in the surrounding areas. This knowledge 

aids in developing contingency plans, resource allocation, and implementing 

measures to minimize the environmental impact of oil spills. 

 

Today, UAV, satellite and photogrammetric images are used along with GIS to 

detect the possible pipeline leak route [4]. With the help of these images, the 

situation of the land before the leak and the situation after the leak can be 

compared. This makes it easier to apply the algorithms developed for leak 

detection to the field in terms of both route accuracy and sensitivity. 

 

In summary, addressing the causes and consequences of onshore oil spills 

requires a multi-faceted approach encompassing accurate data collection, 

rigorous inspections, and applying advanced technologies such as GIS analysis, 

images and predictive modeling. By understanding the factors contributing to oil 

spills and their potential impacts, stakeholders can implement targeted preventive 

measures to minimize the occurrence and mitigate the consequences of such 

incidents. GIS analysis allows for assessing vulnerable areas and predicting spill 

scenarios, enabling informed decision-making and effective emergency response 

planning. Ultimately, these efforts contribute to protecting the environment, 

preserving natural resources, and the well-being of communities affected by oil 

spills. 
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3.1.  Supervisory Control and Data Acquisition (SCADA) 

Supervisory Control and Data Acquisition (SCADA) is crucial in modern industrial 

control systems. It facilitates the monitoring, controlling, and real-time data 

collection via the control center for these systems. It is a vital intelligence 

gathering, control, and supervision node for diverse industrial operations. With 

technological advancements, machine learning and artificial intelligence can be 

implemented to analyze the collected data, improving system efficiency and 

effectiveness [5, 6]. 

 

One salient application of SCADA can be found within pipeline systems, where it 

brings several remarkable capabilities. To illustrate, it provides an automated 

start-up and shutdown functionality. This is significant for operations involving 

equipment such as pumps, where SCADA systems can autonomously initiate or 

cease their operation based on various system parameters or conditions. 

 

In addition to this, SCADA systems are equipped with a mechanism for an 

emergency shutdown. This functionality activates when the pipeline pressure falls 

critically low, or leakage is detected. The system can rapidly respond to potential 

hazards through such mechanisms, thereby maintaining system integrity and 

minimizing potential environmental and financial damage. 

 

Moreover, the SCADA system aids in configuring the pipeline infrastructure, 

which includes the operations of valves - whether they need to be opened or 

closed. This function offers fine control over the pipeline operations, making the 

system adaptive and responsive to varying operational needs. 

 

Another noteworthy feature provided by SCADA systems is real-time modeling. 

This functionality assists in eliminating any erroneous readings by simultaneously 

examining multiple data sets. By identifying and excluding inaccurate data, real-

time modeling helps maintain the credibility and accuracy of the system's data, 

thus enhancing decision-making processes. 
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Furthermore, SCADA can detect leaks by monitoring for severe pressure and 

flow rate drops. Upon detecting such a drop, the system can pinpoint the location 

of the leakage and initiate preventive measures. This capability aids in timely leak 

detection and remediation, mitigating any substantial impact on system 

performance and the environment. 

 

Batch tracking represents another major functionality provided by SCADA. It 

enables the separation of different shipments at the destination point, ensuring 

accurate tracking and allocation of resources. This function, therefore, brings a 

significant degree of efficiency and accountability to the overall pipeline 

operation. 

 

A function related to accuracy and validation in SCADA systems is meter proving. 

Here, various parameters, such as the transported product's pressure, 

temperature, density, and flow rate, can be compared at many different points. 

This process ensures the accuracy and reliability of meter readings, contributing 

to the overall system performance and data credibility. 

 

Regarding communication, SCADA systems utilize diverse methods such as 

copper cables, radio links, GPRS modems, and fiber cables. Modern systems 

often incorporate more than one of these methods with redundancy, ensuring a 

reliable and consistent data exchange between the SCADA system and the 

equipment. 

 

Upon detecting a leak in an oil pipeline, SCADA systems are programmed to 

automatically shut down the pump systems and valves before and after the 

leakage site. By doing so, the system minimizes the leakage volume and ensures 

the safety and efficiency of pipeline operations, ultimately showcasing the 

comprehensive functionality of SCADA in industrial control systems. 
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3.2.  Oil Spill Volume Calculation 

Despite high-speed fiber connections linking the SCADA system and pipeline 

equipment, the flow rate will be limited by the time between leak detection and 

valve closure. Furthermore, an additional flow can occur due to trapped oil, 

resulting from establishing atmospheric pressure equilibrium. 

 

3.2.1.  Calculation of Leakage Volume from Oil Storage Tanks 

The likelihood of onshore oil spills resulting from in-ground oil storage tank 

rupture is minimal. The primary causes of tank rupture are lightning, maintenance 

or hot work activities, operational errors, equipment failures, and intentional 

sabotage [7]. The primary concern associated with oil storage tanks is the 

potential for explosions. To mitigate this risk, these tanks are designed with 

floating roofs to prevent oil evaporation and reduce the likelihood of an explosion. 

However, it is important to note that even with such measures in place, the risk 

of explosion cannot be eliminated. Therefore, further preventive and mitigation 

measures must be implemented to minimize tank rupture risk [8]. These 

measures include regular inspections and maintenance, installing lightning 

protection systems, utilizing fire detectors, and implementing tank cooling 

systems. By employing these strategies, the risk of rupture in storage tanks can 

be significantly reduced. If a rupture occurs in an oil storage tank, the volume of 

oil above the rupture point may escape. The calculation of volume to flow in a 

regularly shaped storage tank depends on parameters such as the height of the 

tank (h), the rupture height from the tank bottom (l), and the base area of the tank 

(S). 

 

The volume of oil that will flow from the oil tank if no measures are taken 

           

 

If the volume of the round, irregularly shaped storage tank is 
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3.2.2.  Calculation of Leakage Volume from Oil Pipelines 

The total leakage volume refers to the quantity of fluid that escapes between a 

damaged section of a pipe and the point at which a valve is fully closed. It 

encompasses the cumulative volume of fluid that flows until the pressure within 

the system is balanced after the valves have been shut, assuming no corrective 

actions are taken in oil pipelines. 

 

3.2.2.1.  Leakage Volume in Time until Valves Shut-in 

The US Department of the Interior, specifically the Bureau of Ocean Energy 

Management, has proposed two distinct approaches for estimating the leakage 

volume resulting from a rupture in a pipeline [9]. It is important to note that these 

methods are not applicable for assessing minor fractures or pinhole leaks in 

pipelines. 

• IDpipe [in]: Pipeline internal Diameter 

• Lpipe [ft]: Pipeline length 

• 𝑋𝑜𝑣𝑓
𝑖𝑛𝑖𝑡𝑖𝑎𝑙[Dimensionless] : Oil volume fraction at ambient pressure and 

temperature 

• 𝑋𝑜𝑣𝑓
𝑎𝑚𝑏[Dimensionless] : Oil and gas densities at ambient pressure and 

temperature 

• 𝜌𝑜
𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑎𝑛𝑑𝜌𝑔

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 [lb/ft³]: Oil and gas densities at initial operational conditions 

• 𝜌𝑜
𝑎𝑚𝑏𝑎𝑛𝑑𝜌𝑔

𝑎𝑚𝑏  [lb/ft³]: Oil and gas densities at ambient pressure and 

temperature 

• GOR [scf/stb]: Gas-oil ratio at standard conditions in pipeline 

• 𝜌𝐿
𝑠𝑡𝑐  [lb/ft³] and γo [-] (specific gravity, dimensionless): Oil density at the 

standard condition in the pipeline 

• 𝜌𝑔
𝑠𝑡𝑐 [lb/ft³], γg [-] (Specific gravity, dimensionless): Pipeline gas density at 

the standard condition 

• Q [stb/d]: Pipeline flow rate 

• t [min]: Time until valve close 

The basic formula is: 

𝑉𝑃𝑟𝑒−𝑆ℎ𝑢𝑡 =
𝑄.𝑡

1140
         [bbls] 
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The advanced formula is:  

Calculating of total volume of pipe 

𝑉𝑝𝑖𝑝𝑒 = (
𝐼𝐷𝑃𝑖𝑝𝑒

24
)

2

. 𝜋. 𝐿𝑝𝑖𝑝𝑒        [𝑓𝑡3] 

Calculating the initial mass 

𝑚𝑡𝑜𝑡
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = (𝜌𝑜

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 . 𝑉𝑝𝑖𝑝𝑒. 𝑋𝑜𝑣𝑓
𝑖𝑛𝑖𝑡𝑖𝑎𝑙) + (𝜌𝑔

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 . 𝑉𝑝𝑖𝑝𝑒 . (1 − 𝑋𝑜𝑣𝑓
𝑖𝑛𝑖𝑡𝑖𝑎𝑙))  [lb] 

Calculating the total mass 

𝑚𝑡𝑜𝑡
𝑎𝑚𝑏 = (𝜌𝑜

𝑎𝑚𝑏 . 𝑉𝑝𝑖𝑝𝑒. 𝑋𝑜𝑣𝑓
𝑎𝑚𝑏) + (𝜌𝑔

𝑎𝑚𝑏 . 𝑉𝑝𝑖𝑝𝑒. (1 − 𝑋𝑜𝑣𝑓
𝑎𝑚𝑏))   [lb] 

Calculating the total mass released 

𝑚𝑟𝑒𝑙 = 𝑚𝑡𝑜𝑡
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑚𝑡𝑜𝑡

𝑎𝑚𝑏        [lb] 

Calculating the gas mass fraction at standard conditions 

𝑋𝑔𝑚𝑓
𝑠𝑡𝑐 =

1

1+
𝜌𝐿

𝑠𝑡𝑐.5.614583

(𝐺𝑂𝑅.𝜌𝑔
𝑠𝑡𝑐)

               [-] 

Calculate the volume of oil releases. Also, this is the basic formula. 

𝑉𝑃𝑟𝑒−𝑆ℎ𝑢𝑡 =
𝑄.𝑡

1140
         [bbls] 

Calculating the volume of oil released. This equation has taken from the 

advanced formula.  

𝑉𝑟𝑒𝑙
𝑠𝑡𝑐 = 0.1781.

𝑚𝑟𝑒𝑙(1−𝑋𝑔𝑚𝑓
𝑠𝑡𝑐 )

𝜌𝑜
𝑠𝑡𝑐 + 𝑉𝑃𝑟𝑒−𝑆ℎ𝑢𝑡     [bbls]

  

 

3.2.2.2.  Volume of Flow That May Occur after Valves Shut-In 

 

Following the detection of a leak in oil pipelines, valves are promptly closed to 

mitigate environmental pollution. Without any intervention, the flow of oil will 

persist until the internal pressure of the pipe aligns with the external pressure, as 

previously discussed. The total volume of oil confined between two valves can be 

determined using the formula  

 

𝑉𝑝𝑖𝑝𝑒 = (
𝐼𝐷𝑃𝑖𝑝𝑒

24
)

2

. 𝜋. 𝐿𝑝𝑖𝑝𝑒        [𝑓𝑡3] 
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However, it is essential to note that not all of this volume will spill. The specific 

volume of oil that will be discharged from the trapped space between two valves 

can be calculated through GIS analysis. 
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Figure 1. Flow Chart of Pipeline Spill Value Calculation 
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A Python-based algorithm utilizing a PostgreSQL database and GIS has been 

developed to analyze the volume of oil that will be discharged after the closure of 

valves. The algorithm's working principle can be comprehensively understood by 

reviewing its step-by-step process, as depicted in Figure 1. 

 

 

Step 1: Input data supply 

DEM data of the target region, pipeline vector drawing with coordinates, and leak 

location coordinates on the pipeline are provided as input. 

 

Step 2: Overlapping Pipeline Geometry and DEM Data 

The pipeline geometry and DEM data are overlapped to identify the areas where 

they coincide. 

This overlapping process helps segment the pipeline based on the DEM data. 

 

Step 3: Intersection with Starting Point and Reference Value Recording 

The DEM data is intersected with the starting point of the pipeline. 

A randomly selected segment, either in the right or left direction, is designated as 

the processed segment. 

The height value at the intersection point is recorded as the reference value. 

 

Step 4: Calculation of the Volume for the Selected Segment 

The volume of the selected pipeline segment is calculated. 

This volume is recorded as the total leakage volume. 

The selected segment is marked as processed to avoid redundancy. 
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Step 5: Loop for Segment Inspection 

The algorithm enters a loop to inspect all parts of the pipeline route segmented 

with DEM data. 

This loop iterates through the following sub-steps: 

a. Sub-step 5a: Check if Segment Has Been Processed 

The algorithm checks whether the selected segment has been processed before. 

If it has not been processed, a new segment is randomly selected, and the loop 

restarts from Step 5. 

If it has been processed, the algorithm proceeds to the next sub-step. 

b. Sub-step 5b: Geometric Touch Check 

The algorithm checks whether the loop segment geometrically touches the 

processed segment. 

If there is no touch, a new unprocessed segment is randomly selected, and the 

loop restarts from Step 5. 

If there is a touch, the algorithm moves to the next sub-step. 

c. Sub-step 5c: Path Update and Volume Calculation 

Within each iteration of the loop, the algorithm updates the path based on the 

height value of the processed segment. 

If the height value of the processed segment is smaller than the reference height 

value, the path is updated. 

If the height value is greater than or equal to the reference value, the height of 

the processed segment becomes the new reference height value. 

The volume of the processed segment is calculated, and the total leakage volume 

value is added to this volume. 

The newly calculated volume is recorded as the total leakage volume. 

The processed segment is marked as selected, and the loop restarts with the 

newly selected segment. 
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Step 6: Switching to Unselected Direction 

 

After inspecting all segments in one direction, the algorithm switches to the 

unselected direction (right or left). 

The height value of the intersection point between the DEM data and the starting 

point is reassigned as the reference value. 

 

Step 7: Repeating Step 5 for the New Direction 

 

The loop described in Step 5 is repeated for the newly selected direction. 

The algorithm goes through the same sub-steps described in Step 5 for the new 

direction. 

By following these steps, the GIS-based algorithm, in conjunction with the 

PostgreSQL database and Python programming language, determines the 

volume of oil that will flow after the valves are closed. The algorithm considers 

the DEM data, pipeline geometry, and the coordinates of the leak location to 

estimate the total leakage volume accurately. 

 

 

The developed Algorithm has been applied to a pipeline segment whose 

elongation section representation is like Figure 2. 

Figure 2. How Pipeline Spill Value Calculate (color shows height). 
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The application yielded anticipated and satisfactory outcomes when executed in 

both the right and left directions, starting from the specified leak point. In Figure 

3, the regions highlighted in red represent areas where oil is projected to be 

discharged. Conversely, the green-colored regions indicate the oil segments that 

remain due to the influence of the topographical features, as depicted in Figure 

3. 

 

 

3.3.  Horizontal Distribution Of Oil Spill On Surface 

Several widely recognized hydrology analyses based on Geographic Information 

Systems (GIS) exist, including flow direction, flow accumulation, and sink 

detection algorithms. While these analysis methods may appear relevant to 

onshore oil spills based on their names, they are not directly applicable to such 

scenarios. These algorithms typically operate by uniformly evaluating equal 

amounts of water drops across each Digital Elevation Model (DEM) cell and 

analyzing all cells. They are commonly utilized for flood modeling or extracting 

topographical features, such as ridges, stream channels, or depressions [10]. 

 

In the context of terrestrial oil spills, they typically occur due to pipeline cracks or 

unintentional accidents on drilling rigs, resulting in a gradual spread of the spilled 

liquid across the affected area. This process involves gradually releasing an exact 

Figure 3. The Result of Pipeline Spill Value in Chart 
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quantity of oil, and progressively dispersing it into the surrounding ground from a 

specific location. Consequently, the application of conventional hydrological 

algorithms, as previously mentioned, proves inadequate in addressing the unique 

characteristics of an oil spill. 

 

The primary criterion for accurately determining the route of an oil spill lies in 

identifying the presence of depressions or holes in the flow path. In such 

instances, the spilled liquid accumulates until its height aligns with that of the 

depression. Generally, oil flows downhill from higher to lower elevations. 

Consequently, when employing a GIS-based solution to simulate an oil spill, the 

liquid consistently follows the path of the lowest neighboring cell. However, if all 

neighboring cells possess higher elevations than the current cell, the oil 

accumulates to a height equivalent to that of the lowest neighboring cell before 

proceeding further. 

 

The soil's absorption rate is another critical factor influencing the length and 

extent of the oil spill's flow path. Various soil types exhibit distinct absorption 

capacities, determining the amount of liquid absorbed. In a GIS-based analysis, 

it is possible to define the absorption rate of the liquid based on the specific soil 

type within a given unit area. This information helps refine the simulation model, 

providing a more accurate representation of the oil spill's behavior. 

 

Additionally, it is important to consider various factors contributing to reducing the 

spilled oil volume. These factors may include evaporation, attachment of oil to 

vegetation within the soil, small cracks in the ground, and other similar 

phenomena. These losses should be considered to provide a more realistic 

estimation of the oil spill's impact. 

 

The oil spill analysis algorithm should be designed to terminate when the 

cumulative losses along the spill path exceed the initially considered volume of 
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oil. This ensures the simulation accurately reflects the real-world scenario and 

prevents overestimating potential impacts. 

 

By considering these specific parameters and incorporating them into a 

comprehensive GIS-based analysis, it becomes possible to simulate the path and 

behavior of an oil spill, thereby facilitating more accurate assessments of the 

spill's potential impacts on the surrounding environment and enabling the 

development of effective response strategies. 

Oil spill analysis was coded using the arcpy library on ArcGIS by following the 

steps below (Figure 4). 

 

1. In the initial stage of this analysis, various inputs are fed into the application. 

These inputs consist of Digital Elevation Model (DEM) data, information on the 

volume of the oil that has leaked, a map detailing different soil types in the area, 

and where the leak started. These inputs serve as a basis for the algorithm to 

conduct its operations. 

 

2. The second step involves integrating the DEM data and the soil type map to 

create a surface model. This model illustrates the terrain's elevation and the type 

of soil found at each location. This is achieved by conducting an intersection 

analysis within the Geographical Information System (GIS), which overlays the 

two data types to create a combined visual representation. The rectangular pixels 

may become somewhat distorted at this stage due to the complex interactions 

between different data layers. However, such distortion is considered insignificant 

for this algorithm. 

 

3. Following this, an intersection analysis is performed between the leak's starting 

point and the DEM data within the GIS. This process identifies the pixel where 

the leak starts and tracks its path on the model. The elevation value of this pixel 

is then noted down and set as the reference height for further steps in the 

algorithm. 
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4. The algorithm then runs in a loop until the total volume of the leak, calculated 

by the system, meets or exceeds the leaked volume input at the beginning of the 

process. The various steps within this loop are as follows: 

   a. The algorithm first identifies the pixel with the smallest elevation value along 

the path of the leak. The elevation value of this pixel is then set as the reference 

height for the next stage of the algorithm. 

   b. If other pixels along the leak path have an elevation equal to the reference 

height, they are marked as the reference path. The algorithm then goes into an 

iterative process, examining the surrounding pixels and adding any with equal 

height to the reference path. This is performed using an endless loop or a 

recursive function, a coding technique that allows a function to call itself. This 

process is akin to a breadth-first search algorithm, a strategy for searching in a 

graph when breadth (neighbors to a node) is prioritized before depth (children of 

a node). 

   c. At this stage, the algorithm calculates the volume of oil accumulated in pixels 

with a height less than the reference height along the leak path. This is computed 

by multiplying the pixel area being processed by the difference between the 

reference height and the height of the pixel in question. The formula can be 

written as: 

      Pixel-based Puddle Volume = Area of the Processed Pixel * (Height of 

Reference Pixel - Height of the Processed Pixel) 

   d. The algorithm then calculates the amount of oil absorbed by each section of 

the DEM, based on the unit volume absorption amount for the specific type of soil 

in that location. 

   e. At this point, the algorithm accounts for additional losses due to small surface 

cracks, evaporation, and oil adhering to vegetation. This is done by defining a 

constant loss parameter proportional to the calculated path length. The total 

losses are then calculated by multiplying the path length by the constant loss 

parameter. 
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   f. The loop is terminated as soon as the combined volumes of oil lost in steps 

c, d, and e meet or exceed the total volume of the oil leak as given in the input 

parameters. 

In the developed Algorithm, the soil type is an optional parameter. A fixed 

absorption rate is given if this data does not exist. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The Algorithm of Horizontal Oil Spill Distribution 
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3.3.1.  Lowest Neighbor Problem 

In the realm of raster-based analysis, there are fundamentally two ways in which 

we define a pixel's neighbors, the '4-pixel neighborhood relation' and the '8-pixel 

neighborhood relation'. 

 

 

 

 

 

 

 

 

 

 

 

 

When explain to the 4-pixel neighborhood relation, In this case, each pixel is 

viewed in relation to its four immediate neighbors, situated in the cardinal 

directions of North, South, East, and West. If single pixel with coordinates (x, y) 

are taken into consideration, its neighbors would be found at the coordinates (x, 

y+1) for the pixel to the North, (x, y-1) for the pixel to the South, (x+1, y) for the 

pixel to the East, and finally, (x-1, y) for the pixel to the West (top image in Figure 

5). Only the pixels that share an edge with the central pixel are considered 

neighbors in this configuration. 

 

On the other hand, the 8-pixel neighborhood relation expands the concept of a 

pixel's neighbors to include those pixels that share a vertex with the central pixel. 

Those pixels situated diagonally to the central pixel must also be considerated. 

Figure 5. Pixel Neighborhoods 



23 
 

In addition to the four coordinates detailed in the 4-pixel neighborhood relation, 

the neighbors would also include (x+1, y+1) for the pixel to the Northeast, (x+1, 

y-1) for the pixel to the Southeast, (x-1, y-1) for the pixel to the Southwest, and 

(x-1, y+1) for the pixel to the Northwest (bottom image in Figure 5). 

 

In the realm of oil spill analytical studies, the traditional understanding of 

neighboring pixels undergoes a transformation. Within this domain, our focus isn't 

solely on stationary pixels. Instead, we delve into pixels that craft an ever-evolving 

and enlarging trajectory. As the oil spill proliferates, so does the trajectory, and 

concomitantly, the neighboring pixels amplify in quantity, undergoing dynamic 

modifications as the trajectory integrates novel pixels (Figure 6). 

 

Should one approach the study of oil spill analytics through the conventional lens 

of raster-oriented trajectory discernment, it would necessitate a perpetual 

documentation of coordinates pertaining to all adjacent pixels. With each 

inclusion of a fresh pixel into the spill trajectory, such documentation demands 

revisions to reflect the evolving vicinity of the impacted pixels. Such an approach 

would undeniably introduce heightened computational intricacy due to the 

perpetually mutable data. 

 

An optimized methodology can be employed to circumvent this computational 

intricacy: transmuting Digital Elevation Model (DEM) data into a vectorial format, 

including their altitudinal metrics. The vectorial data paradigm, employing 

vertices, lines, and polygons for terrestrial representation, typically offers 

enhanced adaptability and is adept at encapsulating intricate geospatial attributes 

with heightened accuracy compared to its raster counterpart. This 

metamorphosis ensures the retention of pivotal data for oil spill analytics without 

the computational challenges inherent in incessant updates of adjacent pixel 

data. 
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3.3.2.  Oil Puddle Problem 

In addressing the critical issue of oil spills, there is a key parameter to be identified 

and understood—'barrier pixels'. In the context of an oil spill, 'barrier pixels' refer 

to specific digital markers on the spill's path. Each spill region is represented as 

a pixelated grid, with each pixel given a numerical value that signifies its 'height' 

or relative elevation. 

 

A unique trait that distinguishes barrier pixels is their role in fluid accumulation. 

Drawing parallels with a dam or blockade, these barrier pixels retain the oil spill 

until such a point when the 'height' of the leaked oil behind them matches their 

own height value. At this juncture, just like a dam at capacity, the oil begins to 

overflow and continues along its path. 

 

In fluid accumulation, the height of the neighboring pixels plays a crucial role. This 

procedure particularly involves the pixel with the smallest height value among the 

neighbors. Fluid builds up when this pixel's height is larger than the previously 

processed pixel's height. The quantity of this buildup is ascertained by the 

difference in height values between the barrier pixel and the pixel processed 

Figure 6. Neighbor Relation in Horizontal Oil Spill Distribution 
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before it. This difference measures the amount of fluid accumulating before 

reaching the barrier pixel's 'capacity' and spilling over.  

As the fluid, or oil, permeates through the grid, each pixel on the predicted route 

carefully inspects its height value. Intriguingly, fluid accumulation will occur in 

every pixel with a height less than that of the last identified barrier pixel. This 

behavior is analogous to the natural fluid movement across varying elevations, 

which flows from higher to lower regions until a barrier is surpassed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To illustrate this, consider an image-based scenario. After processing a pixel with 

a value of 98, it is found that all the neighboring pixels have a higher value than 

98. This scenario signals the commencement of fluid accumulation up until the 

height of the smallest neighboring pixel. In this instance, the smallest neighboring 

pixel has a height of 104. Consequently, the pixel with a height of 98 will 

accumulate 6 meters of fluid, computed by subtracting 98 from 104. Similarly, a 

pixel with a height of 100 will accumulate 4 meters of fluid, representing the 

difference between 104 and 100 (Figure 7). 

Figure 7. Oil Puddle Problem 
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In essence, understanding the behavior of barrier pixels and the dynamics of fluid 

accumulation is an essential part of mitigating oil spills. This detailed explanation 

enhances comprehension of the mechanisms at play in this context, supporting 

effective strategies to manage and reduce the environmental impacts of oil spills. 

 

3.3.3.  Neighbor's Neighbor Problem 

In real-world scenarios, liquid, like water or oil, typically flows along a gradient 

from higher elevations to lower ones. This principle is echoed in Geographic 

Information Systems (GIS), where the motion of liquid is modelled from higher to 

lower cells within a grid representing the terrain. An essential factor to consider 

while calculating this flow direction is the treatment of flat cells within the Digital 

Elevation Model (DEM), which represents the surface of the Earth in a digital 

format. 

 

In the DEM, cells are essentially pixels assigned specific elevation values. In 

cases where multiple cells within the neighborhood share the same elevation, the 

fluid is modeled to traverse these flat cells. This scenario resembles how water 

would flow over a flat surface in the physical world, distributing itself evenly across 

the plane. 

 

Our analytical process necessitates a further step after identifying the lowest 

pixels on the fluid's projected path. Neighbouring cells with the same elevation 

values as these lowest path pixels must be examined. This inspection aims to 

determine whether these equal-elevation cells are adjacent or connected to the 

flow path pixels, implying that they form part of the boundary of the fluid's path. 

 

This step serves to extend the currently calculated flow path. It acknowledges 

that fluid won't necessarily follow a strict path of descending elevations, but might 

also spread laterally across areas of the same height. By doing so, we ensure 
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that our model accurately reflects the potential for fluid to spread across equal 

elevations. 

Let's examine an illustrative example to clarify this concept further. Consider an 

image that represents the flow of a liquid from an area with an elevation value of 

107 to an area with a value of 94. A pixel with 96 (represented in green) has been 

processed on this image. The next step in our application would be to designate 

cells with an elevation value of 95 (shown in yellow) as part of the projected flow 

path. 

 

However, our task does not end here. All neighboring cells of these 95-value cells 

must also be examined to determine if any other cells have an equal elevation 

value of 95. These cells form part of the flow path since the fluid can spread to 

these areas. This way, the flow path is expanded to include these same-elevation 

cells, providing a more comprehensive understanding of the fluid's trajectory 

(Figure 8). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Neighbor's Neighbor Problem 
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3.3.4.  Soil Absorption and Saturation Problem 

Within oil spill mitigation, the volume of oil or 'liquate' that flows over a given 

terrain is influenced by several crucial parameters. Among them, the formation of 

oil puddles, the absorption capabilities of the soil, and the saturation level play 

significant roles. A profound understanding of these components can 

substantially enhance the prediction and control of oil spills. 

 

The first parameter, oil puddles, pertains to oil accumulation in certain parts of 

the terrain. This concept elucidates how oil, rather than distributing uniformly over 

the surface, tends to gather and form 'puddles' or pools in specific areas, 

especially in depressions or low-lying regions. Understanding the formation and 

behavior of these oil puddles is crucial as it affects the volume of oil that spreads 

during a spill. Calculating the volume of these puddles essentially involves 

determining the depth and surface area of these pools, which can then be 

combined to derive the volume of oil contained within. 

 

The next parameter revolves around the absorption or retention capacity of the 

soil. This characteristic can differ substantially based on the soil type or lithology. 

Different soils have varying capacities to absorb or hold oil, directly affecting the 

volume and direction of the oil flow. Recognizing this, leveraging lithology - the 

study of general rock physical characteristics - can produce more accurate 

predictions of oil flow paths. 

 

Saturation plays a pivotal role in influencing the behavior of oil spills. Notably, an 

inverse relationship exists between saturation and absorption. When the 

saturation level of a terrain rises, its absorption capacity diminishes. This 

phenomenon is because a highly saturated surface has reached its holding limit, 

leaving minimal room for further absorption. By adjusting the absorption rate, 

control over saturation can be achieved. For example, heightening the absorption 

value decreases saturation, while reducing it leads to increased saturation. This 
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balance between absorption and saturation is a key determinant in managing the 

behavior of oil spills on a terrain. 

 

In the computational model tailored for oil spill analysis, two options are provided 

to account for soil absorption. The first option is useful if detailed soil type maps 

are available. Users can then employ specific water holding values from 

experimental studies or prior academic research, reflecting the accurate 

absorption capacities of various soils, enhancing the model's precision. 

 

The second option, more streamlined, is utilized when detailed soil type 

information isn't available. Here, a constant value, representing a standard soil 

water holding capacity, is defined. This value applies uniformly across the model, 

offering a generalized estimate of the soil's absorption ability. While not as exact 

as soil-specific data, this approach still furnishes a practical approximation for oil 

spill prediction and management. 

 

3.3.5.  Algorithmic Oil Path Results  

Calculating the leakage volume and tracing the path of leaks in oil pipelines are 

critical for sustainable environmental policies. Another significant aspect of this 

research is conducting these calculations prior to the emergence of potential 

issues, thereby enabling the implementation of preventative and protective 

measures. 

 

The algorithm for calculating leakage volume in oil pipelines proves extremely 

valuable for pipeline operators in deciding the location of valves, as it operates 

throughout all points of the given pipeline. Furthermore, once the valve locations 

are marked on the same algorithm, rerunning the algorithm will allow observation 

of the potential impact of the proposed valve. 
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The path calculation algorithm can be applied to all points on the oil pipeline (with 

submillimeter horizontal resolution) by incorporating a loop into the existing 

algorithm. However, it should not be overlooked that this process will take a 

certain amount of time, depending on the length of the oil pipeline and the 

processing power of the computer being used. The determined leakage path can 

be cross-analyzed with water sources around the oil pipeline on a GIS basis, 

which will be useful in deciding where and how to take precautions against 

potential environmental disaster scenarios. 

 

Figure 9 illustrates a scenario where lithology data is not available. It visually 

represents elevation values obtained from DEM data, denoted by black numbers. 

The flow path cells within the blue boundaries indicate the water's path. Within 

the flow path, the top number indicates the sequential order of the flow direction, 

ranging from 1 to 23 cells. Red numbers also represent the accumulation amount 

at the bottom of the flow path. This depiction allows for a clear understanding of 

the flow direction and the corresponding accumulation values associated with 

each step along the path. 
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Figure 10 demonstrates the flow path direction when soil type data is available. 

To incorporate the soil information, the pixels in the image are divided into smaller 

segments. Each segment represents a different type of soil, characterized by 

varying absorption rates. The flow path pixels are highlighted in different colors, 

with each color corresponding to a specific soil type. This color-coded 

representation aids in visualizing the flow path and identifying the distinct soil 

types involved. Additionally, the red numbers below the flow path indicate the 

Figure 9. Oil Path Results without Lithology Data 
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sequential order of progress for the individual cells. By incorporating the soil type 

data, this image provides valuable insights into the flow direction and the 

influence of different soil characteristics on the overall hydrological process. 

 

Calculating the leakage path when developing an algorithm for oil pipeline leaks 

involves initially identifying a single direction from the starting point of the leak. 

However, considering the possibility of dispersion at the starting point, it would 

be beneficial to run the algorithm at multiple randomly selected points in areas 

where a leakage risk is anticipated. This approach would enhance the accuracy 

and effectiveness of the algorithm in identifying potential leak paths. In Figure 11, 

the algorithm is executed at randomly selected points, and the results are 

displayed with a color gradient representing the water accumulation levels, 

Figure 10. Oil Path Results with Lithology Data 
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ranging from green to red. This color-coding effectively illustrates the varying 

degrees of water accumulation at different points along the pipeline, providing a 

clear visual representation of the potential impact areas in the event of a leak 

 

 

Figure 11. Multiple oil spill directions 
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4.  EXPERIMENTAL STUDY 

In the "Oil Spill Modelling and Volume Calculation" section, an experimental study 

has been conducted using photogrammetric methods to test the algorithm 

described. 

4.1. What is Photogrammetry Briefly 

 

Photogrammetry is a complex scientific method that uses sources of 

electromagnetic radiation, especially photographs, to determine the positions and 

measurements of objects or areas. Its mathematical foundation is based on 

geometric and projection equations to process the information from the 

photographs [11]. 

 

This method is widely used in remote sensing, mapping, geographic information 

systems, urban planning, and many other fields. It processes data from 

photographs to create three-dimensional (3D) models, maps, or other visual 

outputs based on mathematical and geometric principles [11]. 

 

The key to this process is understanding and correctly applying the photographs' 

internal and external orientation parameters. Internal parameters provide 

information about how the photo was taken, defining camera calibration, lens 

focal length, optical center position, and camera sensor characteristics. This 

information provides insights about the camera's configuration at the time of the 

shot [12]. 

 

External parameters provide information about where and in which direction the 

photo was taken, giving details about the photo's geographical location, altitude, 

and orientation. These parameters are crucial in determining the photo's position 

and orientation in the real world. 
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Other essential elements of photogrammetric modeling are tie points and control 

points. Tie points mark locations that correspond to the same object in two or 

more photographs and help to relate the images. Control points are spots with 

known coordinates in the real world and are identified in the photographs. They 

ensure the accuracy of the model and align the created 3D model with real-world 

coordinates. Along with these points, stereo image overlay is also vital. It is the 

process of overlaying two photographs to get 3D depth information. This overlay 

is possible when two photos overlap by a specific amount. Horizontally, the 

overlap is not less than typically 60%, and vertically, it is not less than 30% [13]. 

These overlaps are necessary for accurate 3D data and help in correctly 

matching the tie points. 

 

In addition to these aspects, collinearity equations play a pivotal role in 

photogrammetry. These equations describe the mathematical relationship 

between the 3D coordinates of a point in the physical world and its 2D 

representation in an image. Essentially, collinearity equations ensure that the 

lines connecting 3D points to their 2D counterparts and the camera's perspective 

center are co-linear. This implies that if you extend a line from the camera's lens 

through a point in the image, it will intersect with the actual location of that point 

in the physical world. This fundamental principle is crucial for accurately 

transforming and correlating the 3D and 2D spaces, enabling precise 

measurements and modeling in photogrammetric applications. By rigorously 

applying these equations, photogrammetry can achieve high levels of accuracy 

in mapping and modeling various environments, whether it's for topographical 

mapping, architectural studies, or archaeological documentation. 

 

 

 

𝑥𝑎 = 𝑥𝑝 − 𝑐
𝑟11(𝜒𝐴 − 𝜒0) + 𝑟21(𝑌𝐴 − 𝑌0) + 𝑟31(𝑍𝐴 − 𝑍0)

𝑟13(𝜒𝐴 − 𝜒0) + 𝑟23(𝑌𝐴 − 𝑌0) + 𝑟33(𝑍𝐴 − 𝑍0)
+ 𝑑𝑖𝑠𝑡𝑥

 

𝑦𝑎 = 𝑦𝑝 − 𝑐
𝑟12(𝜒𝐴 − 𝜒0) + 𝑟22(𝑌𝐴 − 𝑌0) + 𝑟32(𝑍𝐴 − 𝑍0)

𝑟13(𝜒𝐴 − 𝜒0) + 𝑟23(𝑌𝐴 − 𝑌0) + 𝑟33(𝑍𝐴 − 𝑍0)
+ 𝑑𝑖𝑠𝑡𝑦

 

 

(1) 

(2) 
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In the collinearity equations formula (1) and (2); 

𝑥𝑎 and 𝑦𝑎 stands for image coordinates 

𝑋𝐴,   𝑌𝐴 and 𝑍𝐴 describes for ground coorinates 

𝑋0,   𝑌0 and 𝑍0 are external orientation parameters 

𝑥0,   𝑦0 and c defines internal orientation parameters 

𝑑𝑖𝑠𝑡𝑥 and  𝑑𝑖𝑠𝑡𝑦 are for coefficients 

 

Recently, photogrammetry has been used for aerial photos, satellite images, 

drone shots, and even smartphone cameras. Advances in technology, new 

algorithms, and software have made photogrammetry faster, more accurate, and 

accessible. Moreover, it's used in processing high-resolution, multi-band images, 

surface modeling, vegetation analyses, and even restoration of historical 

structures. All in all, photogrammetry is an indispensable method to extract metric 

information about the Earth from photographs.  

 

4.2.  Study Site and 3D Photogrammetric Models 

The experimental study was conducted at the Çankaya location in Ankara. The 

objective of the experimental study was to recreate a miniature simulation of a 

real petroleum leak and to evaluate the outputs of a designed algorithm within 

this context. For this purpose, artificial barriers on the project site have been 

cleared, making the area ready for application. On the site, 10 control points have 

been marked with the help of GPS to cover the route of the experimental oil spill. 

Initially, around 70 high resolution photos were taken with a Canon D5700 to 

create a DEM (Digital Elevation Model) of the empty surface. After the flow was 

complete, another set of 70 photos was taken with the same camera for creating 

orthophoto. 

 

The study utilized 2 liters of gasoline with the aim of accurately simulating a real 

petroleum leak. The designated area for the experiment was approximately 1 

meter in width and 3 meters in length. Control points' positions were measured in 
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10-minute intervals using GNSS receivers that can connect to the CORS 

(Continuously Operating Reference Stations) network. When these benchmark 

points were balanced, the observed total error was found to be less than 7mm. 

In photogrammetric applications, marking the control points in the captured 

images resulted in a pixel-based total error observed to be less than 0.5 pixels. 

Figure 12 displays the control points on the orthomosaic created after the 

completion of the leak. 

 

For each of the two applications 2 photogrammetric models (before and after 

leak) were generated using Agisoft Metashape. Figures 13 and 14 display the 

positions of the captured images. 

 

Figure 12. Error values calculation for the model after the leak 
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Figure 13. Image and Photogrammetric Benchmarks Locations Before Spill 

 

 

Figure 14. Image and Photogrammetric Benchmarks Locations After Spill 

 

4.3.  Camera Calibration and Geneartaing 3D Modeling 

Researchers at Hacettepe University have decided to employ the Agisoft 

application for orthophoto and DEM production due to its convenience in both 

licensing and 3D modeling. After capturing images, a Nikon D5200 with an 18mm 
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focal length, camera calibration was performed following the guidelines provided 

in Agisoft's documentation. A wide-screen monitor was utilized to display a 

marked chessboard pattern consisting of black and white squares, referred to as 

a calibration target. At least 10 images of the calibration target were taken from 

different angles. 

 

By adhering to the given instructions, the necessary parameters for camera 

calibration were calculated. These calibrated parameters will be used for further 

processing in the experimental study. 
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<?xml version="1.0" encoding="UTF-8"?> 

<calibration> 

  <projection>frame</projection> 

  <width>6000</width> 

  <height>4000</height> 

  <f>4607.5382883548918</f> 

  <cx>32.819561268028032</cx> 

  <cy>-57.553519603999511</cy> 

  <b1>0.21571805957467546</b1> 

  <b2>1.2697168315769469</b2> 

  <k1>-0.10760831260001989</k1> 

  <k2>0.043125633396674516</k2> 

  <k3>-0.040769766940518273</k3> 

  <k4>0.03668132188938427</k4> 

  <p1>0.00010069941101074302</p1> 

  <p2>-0.00064595178360849035</p2> 

  <date>2023-07-16T05:40:52Z</date> 

</calibration> 

Table 1. Camera Calibration Paramters 

 

 

4.4.  Evaluating Oil Spill Route Using With Developed Algorithm 

The present study involved the development of an algorithm utilizing the ArcGIS 

platform to detect pathways of petrol leakage. The analysis and interpretation of 

outcomes relied upon the DEM data and orthomosaic image generated via the 

Agisoft software. To accommodate the algorithm's requirement of a 16-bit pixel 

depth within ArcGIS, the images were rescaled to match this pixel depth. 
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Furthermore, the horizontal resolution of the DEM produced in Agisoft was initially 

observed to be around 1mm, which was deemed excessively high for achieving 

the algorithm's optimal performance. Furthermore, the horizontal length of the 

petroleum leakage in the narrowest section on the orthomosaic has been 

measured about 2cm and Considering that the error value of the control points 

was approximately 0.7 millimeters, it was decided to use a horizontal resolution 

of 1cm. The vertical resolution of the generated DEM data was scaled to 1mm for 

the study, as a height change of 0.5 centimeters was calculated in the studied 

area 

 

 

Figure 15. Agisoft Dem Result 
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Figure 16. Orthomosaic image of the terrain before the gasoline was spilled 

 

 

 

 

 

 

Figure 17. Orthomosaic image after the gasoline was spilled. 
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Figure 18. Generated Dem and Orthomosaic in ArcGIS 

 

 

4.5.  Experimental Study Results 

The DEM and orthomosaic image generated using Agisoft were opened in the 

ArcGIS program (Figure 15). After the flow was completed, the leakage pathway 

was digitized using polygon geometry on the produced orthomosaic. 

Subsequently, the developed algorithm was applied to the re-evaluated DEM 

data to calculate the algorithmic flow pathway. The actual leakage pathway 

obtained from the orthomosaic was then compared with the leakage pathway 

generated by the algorithm (Figure 17).  
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                  Figure 19. Experimental Study Steps 

 

When comparing the results obtained through the algorithmic calculations with 

the real-world petroleum leakage route, the following conclusions have been 

drawn; the algorithm was able to achieve an accuracy of 84.75% when predicting 

the 2.5-meter-long real-world petroleum leakage route by analyzing 295 pixels 

out of which 250 pixels intersect with the actual route (Figure 20-21). 
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Figure 20. Compresion of Algorithmic and Real Spill Path 

 

 

Figure 21. Results of Algorithmic and Real Spill Path 

 

 

When the reason for the 84% error coming from was examined, it was seen that 

this problem was caused by the "Neighbor's Neighbor Problem" explained in 

section 3.3.3. While the algorithm determines pixels of equal height along the flow 

route, pixels with the same height are also included in the process due to vertical 

resolution. It was determined that when these pixels were excluded from the 



45 
 

calculation, the pixel accuracy of the model in determining the route increased to 

93%. During the process, pixels that were outside the route but provided the 

connection were included in the calculation (Figure 22-23) 

 

 
Accuracy Before Excluding 

Erroneous Pixels 

Accuracy After Excluding 

Erroneous Pixels 

Accuracy %84 %93 

Table 2. Final Oil Spill Result Table 
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Figure 22. Oil Path Analysis Map 
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Figure 23. Flow Route Selection Order 
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5.  CONCLUSION 

 

In conclusion, this study has demonstrated the immense potential of 

Geographical Information Systems (GIS) base programming in planning oil 

pipeline routes and predicting potential oil spills. The research has first revealed 

how to find the optimal pipeline route that minimizes topological and geographical 

complexities. This approach ensures both environmental preservation and socio-

economic sustainability. Moreover, the study examines how a determined volume 

of oil would spread on land surfaces, which will enable the implementation of 

proactive measures to reduce environmental oil pollution. In both solutions, 

unique algorithms were developed to enhance route optimization and spill route 

prediction. 

 

This study has highlighted the importance of topographic classifications during 

pipeline route selection. These classifications involve identifying distinctive 

features such as ridges, flatlands, steep terrains, and water channels within a 

specific area, utilizing advanced GIS analyses. Also, the study has sought to 

understand the landscape as a continuous unit rather than seeing these 

components as discrete parts. In addition, the study has also introduced a simple 

pipeline path by removing complicated patterns and avoiding needless extra 

turns by using a line simplification algorithm. This strategy results in a more 

practical and realistic approach toward pipeline construction by removing high 

vertex points from the proposed route. 

 

Reflecting on the study's results, significant enhancements in pipeline route 

planning have been observed after the line simplification algorithm was applied 

to the route. These enhancements include reducing the pipeline's total length 

from 155.83 kilometres to a more efficient 148.99 kilometres, representing a 

decrease in algorithmic cost of approximately 20%. This optimization has notably 

improved the pipeline's interactions with environmental obstacles and barriers. 
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Furthermore, the findings demonstrate that the results based on topographic 

classification have noticeably improved. 

 

Furthermore, the research has exploited GIS technology, particularly Digital 

Elevation Models (DEMs), and state-of-the-art algorithms to predict possible 

pipeline leakages and spills. High-risk regions can be identified by assessing 

terrain slope, pipeline pressure, and soil type. This proactive approach enables 

effective emergency planning and better resource allocation and potentially 

mitigates the environmental impact of oil spills. In addition to the above, the study 

suggests that incorporating broader data sets, such as geological and lithological 

data, could further enhance the accuracy of pipeline route planning and spill 

prediction. The study also proposes intersecting the pipeline route with watershed 

boundaries and evaluating the results. This approach could lead to the 

identification of optimal valve locations, thereby enhancing the efficiency of the 

pipeline system and reducing the risk of oil spills. However, a limitation of this 

approach is that initially, the algorithm can identify only a single direction from the 

leak's starting point. To address this, it is proposed to run the algorithm at multiple 

randomly selected points in areas with anticipated leakage risks, thereby 

improving the accuracy and effectiveness in identifying potential leak paths. 

 

The results of the algorithm developed for predicting oil spills have been 

simulated with real gasoile using photogrammetric acquisition. It has been 

observed that the spill route calculated by the algorithm aligns satisfactorily with 

the actual spill route. While the spill route was calculated with an 84% accuracy, 

it has been found that when pixels miscalculated due to sensitivity are 

disregarded; the accuracy increases to 93%. 

 

This research has underscored the importance of merging GIS capabilities and 

innovative algorithms in pipeline route planning and spill prediction, thus reducing 

potential environmental damage from oil spills. The findings of this study can be 

instrumental in enhancing the efficiency of pipeline planning and construction, 
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facilitating effective emergency planning, and mitigating the environmental impact 

of oil spills.  

 

Future research should continue to explore and refine these methods, further 

improving the accuracy and efficiency of pipeline route planning and spill 

prediction. There are widespread crude oil pipelines in the world and terrestrial 

oil spill for crude oil can be added to the model. The behavior of crude oil, 

influenced by its viscosity and interaction with different soil types, presents 

complexities not covered in this study. This integration would greatly enhance the 

research and could lead to more inclusive models for pipeline spill predictions. 
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ATTACHMENTS 

 

APPENDIX 1 –  Programming Leakage Volume from Oil Pipelines 
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CREATE TABLE public.petrol_demo 

( 

    gid integer NOT NULL DEFAULT 

nextval('petrol_demo_gid_seq'::regclass), 

    gridcode bigint, 

    cap smallint, 

    parca smallint, 

    uzunluk numeric, 

    hacim numeric, 

    islem smallint, 

    orig_fid integer, 

    hesap numeric, 

    geom geometry(MultiLineString,4326), 

    CONSTRAINT petrol_demo_pkey PRIMARY KEY (gid) 

) 

Table 3. Creating Leakage Volume Table on PostgreSQL 
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#!/usr/bin/env python 

#-*-coding:utf-8-*- 

 

import psycopg2 

from datetime import datetime 

startTime = datetime.now() 

 

# Database connection setup 

baglanti_text = "dbname=A_petrol" + " " + "user=postgres" + " " + 

"password=postgres" + " " + "port=5432" 

table = 'petrol_demo' 

conn = psycopg2.connect(baglanti_text) 

db = conn.cursor() 

 

# Query to count the number of rows in the table 

sorgu = 'SELECT count(*) FROM [14];'.format(table) 

db.execute(sorgu) 

conn.commit() 

kac_oge_var = (db.fetchall()[0][0]) 

 

# Function to find the next row to process 

def islmid_bul(conn, db, table): 

    # ... 

    return islem_id, baslangic, yukseklik, hacim 

 

# Function to update the 'hesap' column of a specific row 

def math_hesap(conn, db, table, id, hacim): 

    # ... 

 

# Get initial values for processing 

islem_id, baslangic, bas_yukseklik, bas_hacim = islmid_bul(conn, 

db, table) 

 

# Function to retrieve neighboring row based on conditions 

def komsuluk(conn, db, id, table): 

    # ... 

    return [bulunanid, yukseklik, hacim] 

 

ikinci = 0 

kactane = kac_oge_var 

math_toplam_hacim = 0 

yukseklk_maks = bas_yukseklik 

 

# Loop to process all parts of the pipe stored in the database 

while True: 

    # Check if the end of the loop is reached and reset variables 

    if islem_id == -1: 

        islem_id = baslangic 

        yukseklik = bas_yukseklik 

        yukseklk_maks = bas_yukseklik 

        ikinci = ikinci + 1 
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    # Processing for the second iteration of the loop 

    if ikinci == 2: 

        # Assumption that approximately half the flow goes to the 

pipe where the opening occurs 

        math_toplam_hacim = math_toplam_hacim + (bas_hacim) / 2 

         

        # Small value assigned to prevent errors when there is no 

flow in the selected part 

        if math_toplam_hacim == 0: 

            math_toplam_hacim = 0.001 

         

        # Update the 'hesap' column of the first part with the 

calculated volume 

        math_hesap(conn, db, table, islem_id, math_toplam_hacim) 

         

        # Break the loop when all parts are processed 

        if baslangic == kac_oge_var: 

            break 

         

        math_toplam_hacim = 0 

        islem_id, baslangic, bas_yukseklik, bas_hacim = 

islmid_bul(conn, db, table) 

        ikinci = 0 

        yukseklik = bas_yukseklik 

        yukseklk_maks = bas_yukseklik 

     

    # Find the next unprocessed neighboring part 

    sonuc = komsuluk(conn, db, islem_id, table) 

    islem_id = sonuc[0] 

    yukseklik = sonuc[1] 

    hacim = sonuc[2] 

     

    # Update the reference height value if the current part's 

height is higher 

    if yukseklik >= yukseklk_maks: 

        yukseklk_maks = yukseklik 

        math_toplam_hacim = math_toplam_hacim + hacim 

 

db.close() 

 

# Print the execution time of the algorithm 

print(datetime.now() - startTime) 

Table 4. Pipeline Spill Value Calculator Code in Python 

 

For the algorithm to operate, it is imperative that the table named "petrol_demo" 

is initially produced in the PostgreSQL database, using the provided code. The 

resulting table should then be sectioned using the help of geographic analyses 

into grid cells and filled as shown below. The code can be executed after the 

Python database connection settings are configured. 
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gid: This represents the primary key of the table. 

gridcode: This denotes the altitude value of each pipeline segment intersected 

with the DEM (Digital Elevation Model). 

cap: This signifies the pipeline's diameter and is used for volume calculations. 

parca indicates the remaining sections between the installed valves on the 

pipeline. For example, the part from the start to the first valve should be numbered 

1, and the section from the first valve to the second should be numbered 2. 

uzunluk: This is the length of the pipeline segment intersecting with the DEM. 

hacim: This is the volume in cubic meters, calculated using the pipe's diameter 

and length according to the cylinder volume calculation. 

islem: This is used by the developed algorithm and stores whether an operation 

has been previously performed on a cell. The default value to be entered in the 

database should be 0. 

orig_fid: This is a unique value given to each segment produced by intersecting 

the DEM with the pipeline axis, but it is not used in the algorithm. 

hesap: This is the result produced by the algorithm. It holds the calculation of the 

total volume that will flow from the related part in both left and right directions. 

geom: This is the path's geometry, held as a multiline string in geometry type. 
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When the code is executed with the related gids, the seepage flow caused by 

gravity and topography will be calculated for each segment on the pipeline. 

Upon execution, the algorithm generates an output as described above. When it 

is necessary to rerun the algorithm, it is essential to reset the 'islem' and 'hesap' 

columns to zero (Figure 24). This requirement is due to the logic based on the 

developed algorithm. 

  

Figure 24. The Result of Pipeline Spill Value in Database 
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APPENDIX 2 –  Programming Horizontal Oil Distribution 
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import arcpy 

arcpy.CheckOutExtension("Spatial") 

arcpy.env.overwriteOutput = 1 

 

# The line where the starting point of the oil leak is taken as a 

variable with arcpy 

baslangic=arcpy.GetParameterAsText(0) 

# The line where the volume of oil subject to distribution is 

defined with arcpy 

petrol_miktari=float(arcpy.GetParameterAsText(1)) 

# The rate of rise of oil according to horizontal resolution in 

very high horizontal resolution dem data is defined with arpy, it 

comes from the interface 

hacim_orani=float(arcpy.GetParameterAsText(2)) 

# The user defines whether to enter the lithology value from the 

interface 

litoloji_var_yok=arcpy.GetParameterAsText(3) 

# If lithology is not defined, the absorption amount based on a 

stable pixel 

pixel_emme=float(arcpy.GetParameterAsText(4)) 

 

mxd = arcpy.mapping.MapDocument("CURRENT") 

 

pathmxd=(mxd.filePath).encode('utf8') 

pathmxdlist=pathmxd.split("\\") 

pathmxdlist.pop(len(pathmxdlist)-1) 

pathmxd="\\".join(pathmxdlist) 

workspace=pathmxd 

arcpy.env.workspace=workspace 

 

# The starting point entered by the user is saved as shp 

arcpy.FeatureClassToFeatureClass_conversion(baslangic,  

workspace+r"\data\output", "baslangic.shp") 

 

# From the starting point, the dem value is cut from a region 

where the most leakage will occur considering the dem horizontal 

resolution and from now on, the transactions will be made on this 

dem data 

arcpy.Buffer_analysis(baslangic,workspace+r"\data\output\kesme_bu

ffer.shp","10 Kilometers","FULL","ROUND","ALL") 

arcpy.gp.ExtractByMask_sa(workspace+r"\toolbox\tr_dem_wgs.tif", 

workspace+r"\data\output\kesme_buffer.shp",workspace+r"\data\outp

ut\kesme_raster.tif") 

# The dem data in raster format is converted to vector format for 

processes such as neighborhood analysis 

arcpy.RasterToPolygon_conversion(workspace+r"\data\output\kesme_r

aster.tif", workspace+r"\data\output\calisma_alan.shp", 

"NO_SIMPLIFY","VALUE") 

 

# New column structures below are added to the dem data converted 

to vector format for calculations 

arcpy.AddField_management(workspace+r"\data\output\calisma_alan.s

hp", "durum", "SHORT") 
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arcpy.AddField_management(workspace+r"\data\output\calisma_alan.s

hp", "yukselme", "FLOAT") 

arcpy.AddField_management(workspace+r"\data\output\calisma_alan.s

hp", "alan", "FLOAT") 

arcpy.AddField_management(workspace+r"\data\output\calisma_alan.s

hp", "biriken", "FLOAT") 

arcpy.AddField_management(workspace+r"\data\output\calisma_alan.s

hp", "lito_emme", "FLOAT") 

arcpy.AddField_management(workspace+r"\data\output\calisma_alan.s

hp", "sira", "SHORT") 

 

# Depending on whether the user shows the lithology value, the 

dem converted to vector is divided into parts according to the 

lithology layer. If lithology is not shown, the dem value is not 

divided 

if litoloji_var_yok=="Stabil Deger": 

      

arcpy.MakeFeatureLayer_management(workspace+r"\data\output\calism

a_alan.shp", "dem_lyr") 

else: 

      

arcpy.Intersect_analysis([workspace+r"\data\litoloji.shp",workspa

ce+ r"\data\output\calisma_alan.shp"], 

workspace+r"\data\output\calisma_alan2.shp", "", "" "") 

      

arcpy.MakeFeatureLayer_management(workspace+r"\data\output\calism

a_alan2.shp", "dem_lyr") 

 

# The area value of each pixel is calculated, this value will be 

used in accumulation operations 

arcpy.CalculateField_management("dem_lyr", 

"alan",'!shape.area@SQUAREMETERS!', "PYTHON_9.3") 

 

# The first pixel where the initial leak at the starting point 

will start is found by intersection analysis 

arcpy.SelectLayerByLocation_management ("dem_lyr", "INTERSECT", 

baslangic,"","NEW_SELECTION") 

f1 = "GRIDCODE" 

liste_komsular=[] 

for row in sorted(arcpy.da.SearchCursor("dem_lyr", [f1])): 

      liste_komsular.append(row[0]) 

# The pixel with the smallest height value among the pixels 

touching the starting pixel is selected 

min_yukselme=min(liste_komsular) 

 

# A value of 1 is assigned to the selected pixels indicating that 

the operation has been performed and the height value of the 

starting pixel is written to the elevation 

arcpy.SelectLayerByLocation_management ("dem_lyr", 

"BOUNDARY_TOUCHES", "","","NEW_SELECTION") 

experssion = '\"GRIDCODE\" ='+str(int(min(liste_komsular))) 

arcpy.SelectLayerByAttribute_management ("dem_lyr", 

"SUBSET_SELECTION",experssion) 

arcpy.CalculateField_management("dem_lyr", "durum",'1', 

"PYTHON_9.3") 

arcpy.CalculateField_management("dem_lyr", 

"yukselme",'!GRIDCODE!', "PYTHON_9.3") 
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i=1 

# The loop enters until the total loss amount is greater than or 

equal to the entered leak volume 

while True: 

      # The leak route on which the operation has been performed 

is selected, the loss volume will be calculated on this selection 

      arcpy.SelectLayerByAttribute_management ("dem_lyr", 

"NEW_SELECTION",'"durum"=1') 

 

      # Total loss volume due to lithology absorption and 

accumulation is calculated 

      if litoloji_var_yok=="Stabil Deger": 

            arcpy.Statistics_analysis("dem_lyr", 

workspace+r"\toolbox\tablo.gdb\sonuc", [["biriken", 

"SUM"],["biriken","COUNT"]]) 

            f1,f2 = "SUM_biriken","COUNT_biriken" 

            for row in 

arcpy.da.SearchCursor(workspace+r"\toolbox\tablo.gdb\sonuc", [f1, 

f2]): 

                  pass 

             

            deger=row[0]+pixel_emme*row[1] 

      else: 

            arcpy.Statistics_analysis("dem_lyr", 

workspace+r"\toolbox\tablo.gdb\sonuc", [["biriken", 

"SUM"],["lito_emme","SUM"]]) 

            f1,f2 = "SUM_biriken","SUM_lito_emme" 

            for row in 

arcpy.da.SearchCursor(workspace+r"\toolbox\tablo.gdb\sonuc", [f1, 

f2]): 

                  pass 

            deger=row[0]+row[1] 

             

      # If the total loss is greater than or equal to the leak 

volume, it exits the loop 

      if deger>=petrol_miktari: 

            break 

 

      # All the leak routes processed so far are found, all 

pixels neighboring this route are selected 

      arcpy.SelectLayerByLocation_management ("dem_lyr", 

"BOUNDARY_TOUCHES", "","","NEW_SELECTION") 

      arcpy.SelectLayerByAttribute_management ("dem_lyr", 

"REMOVE_FROM_SELECTION",'"durum"=1') 

 

      # The smallest pixel value among the pixels neighboring the 

current leak route is determined 

      f1 = "GRIDCODE" 

      liste_komsular=[] 

      for row in sorted(arcpy.da.SearchCursor("dem_lyr", [f1])): 

            liste_komsular.append(row[0]) 

 

      min_yukselme=min(liste_komsular) 

      experssion = '\"GRIDCODE\" ='+str(int(min(liste_komsular))) 
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      # All pixels with the smallest height value among 

neighboring pixels are selected, these pixels will be assigned as 

processed pixels later 

      arcpy.SelectLayerByAttribute_management ("dem_lyr", 

"SUBSET_SELECTION",experssion) 

       

      onceki_sayi = 

int(arcpy.GetCount_management("dem_lyr").getOutput(0))  

      sonraki_sayi=onceki_sayi+1 

       

      # It is checked whether there is a pixel value equal to or 

smaller than the detected height value around the pixels with the 

lowest height among the neighbors 

      while True: 

            if onceki_sayi>=sonraki_sayi: 

                  break 

            onceki_sayi = 

int(arcpy.GetCount_management("dem_lyr").getOutput(0))  

             

            arcpy.SelectLayerByLocation_management ("dem_lyr", 

"BOUNDARY_TOUCHES", "","","NEW_SELECTION") 

            arcpy.SelectLayerByAttribute_management ("dem_lyr", 

"REMOVE_FROM_SELECTION",'"durum"=1') 

            arcpy.SelectLayerByAttribute_management ("dem_lyr", 

"SUBSET_SELECTION",experssion) 

 

            sonraki_sayi = 

int(arcpy.GetCount_management("dem_lyr").getOutput(0)) 

 

      # All newly determined pixels are added to the leak route 

      arcpy.CalculateField_management("dem_lyr", "durum",'1', 

"PYTHON_9.3") 

      # A sequence number is given to the selected pixels about 

which order the operation was performed 

      arcpy.CalculateField_management("dem_lyr", "sira",i, 

"PYTHON_9.3") 

 

      # If there are pixels with a height value greater than the 

newly found minimum neighbor pixel height, there will be 

accumulation in these pixels, the accumulation volume on the 

detected route is calculated 

      experssion = '\"durum\"=1 AND 

\"yukselme\"<='+str(min_yukselme) 

      arcpy.SelectLayerByAttribute_management ("dem_lyr", 

"NEW_SELECTION",experssion) 

      arcpy.CalculateField_management("dem_lyr", 

"yukselme",min_yukselme, "PYTHON_9.3") 

      experssion = "(!yukselme!-!GRIDCODE!)*!alan!" 

      arcpy.CalculateField_management("dem_lyr", 

"biriken",experssion, "PYTHON_9.3") 

 

      # If the absorption value comes from lithology, the total 

absorption in the pixels is calculated 

      if litoloji_var_yok!="Stabil Deger": 

            experssion = "!emme!" 

            arcpy.CalculateField_management("dem_lyr", 

"lito_emme",experssion, "PYTHON_9.3")    



61 
 

225 

226 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

239 

240 

241 

242 

243 

244 

      i=i+1 

      arcpy.AddMessage(i) 

# The calculated result information is recorded as soon as the 

total loss amount is greater than or equal to the leak volume 

arcpy.AddMessage(deger) 

arcpy.SelectLayerByAttribute_management ("dem_lyr", 

"NEW_SELECTION",'"durum"=1') 

arcpy.FeatureClassToFeatureClass_conversion("dem_lyr",workspace+r

"\data\output", "cikti.shp") 

arcpy.AddField_management(workspace+r"\data\output\cikti.shp", 

"sonuc", "FLOAT") 

arcpy.CalculateField_management(workspace+r"\data\output\cikti.sh

p", "sonuc",'!yukselme!-!GRIDCODE!', "PYTHON_9.3") 

 

newlayer = 

arcpy.mapping.Layer(workspace+r"\data\output\cikti.shp") 

df = mxd.activeDataFrame 

arcpy.mapping.AddLayer(df, newlayer, "TOP") 

mxd.save() 

Table 5. Horizontal Oil Distribution Code in Python 

 

 

Figure 25. Interface of Oil Spill Distribution Application 

 

Creating an interface within the arctoolbox environment is necessary to properly 

function the provided code. This interface should include a graphical window 

displaying a screenshot (Figure 25), allowing users to define input parameters. It 

should be noted that the DEM and Lithology data are currently hardcoded into 

the system, without any enhancements to facilitate their modification through the 

interface. 


